Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[BugFix][TIR] Fix cross-thread reduction when single reduction loop with predicate #10016

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 5 additions & 3 deletions src/tir/transforms/lower_cross_thread_reduction.cc
Original file line number Diff line number Diff line change
Expand Up @@ -582,10 +582,12 @@ class CrossThreadReductionTransformer : public StmtMutator {
PrimExpr combiner_rhs{nullptr};
std::tie(n_bound_reduction_loops, reducer, combiner_rhs) =
CheckCanApplyCrossThreadReduction(block, reduction_loops);
// Step 3. When not all the reduction-related loops are bound to thread axes, in-thread
// reduction is needed in this cross-thread reduction.
// Step 3. Before doing the cross-thread reduction, in-thread reduction is needed when
// - not all the reduction-related loops are bound to thread axes, or
// - the block-realize has a non-constant-true predicate.
bool need_in_thread_reduction =
n_bound_reduction_loops < static_cast<int>(reduction_loops.size());
n_bound_reduction_loops < static_cast<int>(reduction_loops.size()) ||
!is_one(realize->predicate);
// Step 4. Create intermediate buffers, storing them in `ct_buffer` and
// `it_buffer`. Let the scope block allocate these new buffers.
std::vector<Buffer>& new_buffers = block2new_buffers_[block_stack_.back()];
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -327,6 +327,162 @@ def lowered_with_block_predicate(a: T.handle, b: T.handle) -> None:
B[vi] = reduce_temp0[0]


@T.prim_func
def single_reduction_loop_with_block_predicate(
A: T.Buffer[(256, 256), "float32"], T_softmax_norm: T.Buffer[(256, 256), "float32"]
) -> None:
T_softmax_maxelem_shared = T.alloc_buffer([256], dtype="float32", scope="shared")
T_softmax_expsum_shared = T.alloc_buffer([256], dtype="float32", scope="shared")
for i0 in T.serial(256):
for ax0, ax1_0 in T.grid(1, 1):
for ax1_1 in T.thread_binding(512, thread="threadIdx.x"):
with T.block("T_softmax_maxelem"):
i0_1 = T.axis.spatial(256, i0)
k = T.axis.reduce(256, ax1_1)
T.where(ax1_0 * 512 + ax1_1 < 256)
T.reads(T_softmax_maxelem_shared[i0_1], A[i0_1, k])
T.writes(T_softmax_maxelem_shared[i0_1])
with T.init():
T_softmax_maxelem_shared[i0_1] = T.float32(-3.4028234663852886e38)
T_softmax_maxelem_shared[i0_1] = T.max(
T_softmax_maxelem_shared[i0_1], A[i0_1, k]
)
for ax0, ax1_0 in T.grid(1, 1):
for ax1_1 in T.thread_binding(512, thread="threadIdx.x"):
with T.block("T_softmax_expsum"):
i0_2 = T.axis.spatial(256, i0)
k = T.axis.reduce(256, ax1_1)
T.where(ax1_0 * 512 + ax1_1 < 256)
T.reads(
T_softmax_expsum_shared[i0_2], A[i0_2, k], T_softmax_maxelem_shared[i0_2]
)
T.writes(T_softmax_expsum_shared[i0_2])
with T.init():
T_softmax_expsum_shared[i0_2] = T.float32(0)
T_softmax_expsum_shared[i0_2] = T_softmax_expsum_shared[i0_2] + T.exp(
A[i0_2, k] - T_softmax_maxelem_shared[i0_2], dtype="float32"
)
for i1_0 in T.serial(1):
for i1_1 in T.thread_binding(512, thread="threadIdx.x"):
with T.block("T_softmax_norm"):
i0_3 = T.axis.spatial(256, i0)
i1 = T.axis.spatial(256, i1_1)
T.where(i1_0 * 512 + i1_1 < 256)
T.reads(
A[i0_3, i1], T_softmax_maxelem_shared[i0_3], T_softmax_expsum_shared[i0_3]
)
T.writes(T_softmax_norm[i0_3, i1])
T.block_attr({"axis": 1})
T_softmax_norm[i0_3, i1] = (
T.exp(A[i0_3, i1] - T_softmax_maxelem_shared[i0_3], dtype="float32")
/ T_softmax_expsum_shared[i0_3]
)


@T.prim_func
def lowered_single_reduction_loop_with_block_predicate(
A: T.Buffer[(256, 256), "float32"], T_softmax_norm: T.Buffer[(256, 256), "float32"]
) -> None:
T_softmax_maxelem_shared = T.alloc_buffer([256], dtype="float32", scope="shared")
T_softmax_expsum_shared = T.alloc_buffer([256], dtype="float32", scope="shared")
cross_thread_0 = T.alloc_buffer([1], dtype="float32", strides=[1], scope="local")
in_thread_0 = T.alloc_buffer([1], dtype="float32", strides=[1], scope="local")
cross_thread_1 = T.alloc_buffer([1], dtype="float32", strides=[1], scope="local")
in_thread_1 = T.alloc_buffer([1], dtype="float32", strides=[1], scope="local")
for i0 in T.serial(256):
for ax0, ax1_0 in T.grid(1, 1):
for ax1_1 in T.thread_binding(512, thread="threadIdx.x"):
with T.block("T_softmax_maxelem_in_thread_init"):
T.reads()
T.writes(in_thread_0[0])
in_thread_0[0] = T.float32(-3.4028234663852886e38)
with T.block("T_softmax_maxelem_in_thread"):
i0_1 = T.axis.spatial(256, i0)
k = T.axis.reduce(256, ax1_1)
T.where(ax1_0 * 512 + ax1_1 < 256)
T.reads(A[i0_1, k], in_thread_0[0])
T.writes(in_thread_0[0])
in_thread_0[0] = T.max(in_thread_0[0], A[i0_1, k])
with T.block("T_softmax_maxelem_cross_thread"):
T.reads(in_thread_0[0])
T.writes(cross_thread_0[0])
T.attr(
T.comm_reducer(
lambda x, y: T.max(x, y), [T.float32(-3.4028234663852886e38)]
),
"reduce_scope",
T.reinterpret(T.uint64(0), dtype="handle"),
)
T.evaluate(
T.tvm_thread_allreduce(
T.uint32(1),
in_thread_0[0],
True,
cross_thread_0.data,
ax1_1,
dtype="handle",
)
)
with T.block("T_softmax_maxelem_write_back"):
i0_2 = T.axis.spatial(256, i0)
T.reads(cross_thread_0[0])
T.writes(T_softmax_maxelem_shared[i0_2])
T_softmax_maxelem_shared[i0_2] = cross_thread_0[0]
for ax0, ax1_0 in T.grid(1, 1):
for ax1_1 in T.thread_binding(512, thread="threadIdx.x"):
with T.block("T_softmax_expsum_in_thread_init"):
T.reads()
T.writes(in_thread_1[0])
in_thread_1[0] = T.float32(0)
with T.block("T_softmax_expsum_in_thread"):
i0_3 = T.axis.spatial(256, i0)
k = T.axis.reduce(256, ax1_1)
T.where(ax1_0 * 512 + ax1_1 < 256)
T.reads(A[i0_3, k], T_softmax_maxelem_shared[i0_3], in_thread_1[0])
T.writes(in_thread_1[0])
in_thread_1[0] = in_thread_1[0] + T.exp(
A[i0_3, k] - T_softmax_maxelem_shared[i0_3], dtype="float32"
)
with T.block("T_softmax_expsum_cross_thread"):
T.reads(in_thread_1[0])
T.writes(cross_thread_1[0])
T.attr(
T.comm_reducer(lambda x_1, y_1: x_1 + y_1, [T.float32(0)]),
"reduce_scope",
T.reinterpret(T.uint64(0), dtype="handle"),
)
T.evaluate(
T.tvm_thread_allreduce(
T.uint32(1),
in_thread_1[0],
True,
cross_thread_1.data,
ax1_1,
dtype="handle",
)
)
with T.block("T_softmax_expsum_write_back"):
i0_4 = T.axis.spatial(256, i0)
T.reads(cross_thread_1[0])
T.writes(T_softmax_expsum_shared[i0_4])
T_softmax_expsum_shared[i0_4] = cross_thread_1[0]
for i1_0 in T.serial(1):
for i1_1 in T.thread_binding(512, thread="threadIdx.x"):
with T.block("T_softmax_norm"):
i0_5 = T.axis.spatial(256, i0)
i1 = T.axis.spatial(256, i1_1)
T.where(i1_0 * 512 + i1_1 < 256)
T.reads(
A[i0_5, i1], T_softmax_maxelem_shared[i0_5], T_softmax_expsum_shared[i0_5]
)
T.writes(T_softmax_norm[i0_5, i1])
T.block_attr({"axis": 1})
T_softmax_norm[i0_5, i1] = (
T.exp(A[i0_5, i1] - T_softmax_maxelem_shared[i0_5], dtype="float32")
/ T_softmax_expsum_shared[i0_5]
)


@T.prim_func
def reducer_max(a: T.handle, b: T.handle) -> None:
A = T.match_buffer(a, [128, 128], dtype="float32")
Expand Down Expand Up @@ -686,6 +842,13 @@ def test_with_block_predicate():
_check(with_block_predicate, lowered_with_block_predicate)


def test_single_reduction_loop_with_block_predicate():
_check(
single_reduction_loop_with_block_predicate,
lowered_single_reduction_loop_with_block_predicate,
)


def test_reducer_max():
_check(reducer_max, lowered_reducer_max)

Expand Down