-
Notifications
You must be signed in to change notification settings - Fork 3.5k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[MetaSchedule][M4b] Testcases for TensorRT builder/runner (#10055)
Co-authored-by: Siyuan Feng <[email protected]> Co-authored-by: Bohan Hou <[email protected]> Co-authored-by: Hongyi Jin <[email protected]> Co-authored-by: Ruihang Lai <[email protected]> Co-authored-by: Junru Shao <[email protected]> Co-authored-by: Xiyou Zhou <[email protected]>
- Loading branch information
1 parent
0fb5ae2
commit ba65197
Showing
3 changed files
with
282 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,53 @@ | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. | ||
"""TensorRT-MetaSchedule integration""" | ||
# pylint: disable=import-outside-toplevel | ||
|
||
from typing import List | ||
import tvm | ||
from tvm.runtime import Module | ||
from tvm.meta_schedule.builder import BuilderResult | ||
from tvm.target import Target | ||
|
||
|
||
def relay_build_with_tensorrt( | ||
mod: Module, | ||
target: Target, | ||
params: dict, | ||
) -> List[BuilderResult]: | ||
"""Build a Relay IRModule with TensorRT BYOC | ||
Parameters | ||
---------- | ||
mod : IRModule | ||
The Relay IRModule to build. | ||
target : Target | ||
The target to build the module for. | ||
params : Dict[str, NDArray] | ||
The parameter dict to build the module with. | ||
Returns | ||
------- | ||
mod : runtime.Module | ||
The built module. | ||
""" | ||
from tvm.relay.op.contrib.tensorrt import partition_for_tensorrt | ||
|
||
assert isinstance(target, Target) | ||
mod, config = partition_for_tensorrt(mod, params) | ||
with tvm.transform.PassContext(opt_level=3, config={"relay.ext.tensorrt.options": config}): | ||
result = tvm.relay.build_module._build_module_no_factory(mod, "cuda", "llvm", params) | ||
assert isinstance(result, Module) | ||
return result |
228 changes: 228 additions & 0 deletions
228
tests/python/unittest/test_meta_schedule_byoc_tensorrt.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,228 @@ | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. | ||
""" Test Meta Schedule Builder """ | ||
import sys | ||
import pytest | ||
import itertools | ||
import tvm | ||
from tvm import relay | ||
from tvm.relay import testing | ||
from tvm.relay.op.contrib import tensorrt | ||
import numpy as np | ||
from typing import List | ||
from tvm._ffi import register_func | ||
from tvm.target import Target | ||
from tvm.runtime import Module | ||
from tvm.meta_schedule.arg_info import TensorInfo | ||
from tvm.meta_schedule.builder import BuilderInput, LocalBuilder, BuilderResult | ||
from tvm.meta_schedule.runner import ( | ||
EvaluatorConfig, | ||
LocalRunner, | ||
RunnerInput, | ||
) | ||
|
||
from tvm.tir import FloatImm | ||
from tvm.meta_schedule.testing import get_network | ||
|
||
has_tensorrt_codegen = pytest.mark.skipif( | ||
not tvm.get_global_func("relay.ext.tensorrt", True), reason="TensorRT codegen not available" | ||
) | ||
has_tensorrt_runtime = pytest.mark.skipif( | ||
not tensorrt.is_tensorrt_runtime_enabled(), reason="TensorRT runtime not available" | ||
) | ||
|
||
|
||
# conv2d+relu network | ||
def get_conv2d_relu( | ||
data_shape, | ||
out_channels, | ||
kernel_size, | ||
strides, | ||
padding, | ||
dilation, | ||
groups, | ||
data_layout, | ||
kernel_layout, | ||
dtype, | ||
): | ||
|
||
data = relay.var("data", relay.TensorType(data_shape, dtype)) | ||
weight = relay.var("weight") | ||
|
||
net = relay.nn.conv2d( | ||
data=data, | ||
weight=weight, # conv kernel | ||
strides=strides, | ||
padding=padding, | ||
dilation=dilation, | ||
groups=groups, | ||
channels=out_channels, | ||
kernel_size=kernel_size, | ||
data_layout=data_layout, | ||
kernel_layout=kernel_layout, | ||
) | ||
net = relay.add(net, net) | ||
net = relay.nn.relu(net) | ||
|
||
inputs = relay.analysis.free_vars(net) | ||
return relay.Function(inputs, net) | ||
|
||
|
||
def verify_meta_schedule_with_tensorrt( | ||
mod, params, data_shape, use_meta_sched: bool = True, use_trt: bool = True, mode: str = "vm" | ||
): | ||
if use_meta_sched: | ||
# With meta_schedule | ||
dev = "cuda" | ||
|
||
# Build | ||
if use_trt: | ||
from tvm.meta_schedule.testing import relay_build_with_tensorrt | ||
|
||
builder = LocalBuilder(f_build=relay_build_with_tensorrt) | ||
else: | ||
|
||
def relay_build_without_tensorrt( | ||
mod: Module, | ||
target: Target, | ||
params: dict, | ||
) -> List[BuilderResult]: | ||
return tvm.relay.build_module._build_module_no_factory(mod, "cuda", "llvm", params) | ||
|
||
builder = LocalBuilder(f_build=relay_build_without_tensorrt) | ||
|
||
builder_input = BuilderInput(mod, Target(dev, host="llvm"), params) | ||
|
||
(builder_result,) = builder.build([builder_input]) | ||
assert builder_result.error_msg is None | ||
assert builder_result.artifact_path is not None | ||
|
||
# Run | ||
evaluator_config = EvaluatorConfig( | ||
number=5, | ||
repeat=2, | ||
min_repeat_ms=0, | ||
enable_cpu_cache_flush=False, | ||
) | ||
|
||
runner_input = RunnerInput( | ||
builder_result.artifact_path, "cuda", [TensorInfo("float32", data_shape)] | ||
) | ||
|
||
def eval_func(rt_mod, device, evaluator_config, repeated_args): | ||
rt_mod = tvm.contrib.graph_executor.GraphModule(rt_mod["default"](device)) | ||
|
||
eval = rt_mod.module.time_evaluator( | ||
func_name="run", | ||
dev=device, | ||
number=evaluator_config.number, | ||
repeat=evaluator_config.repeat, | ||
min_repeat_ms=evaluator_config.min_repeat_ms, | ||
f_preproc="cache_flush_cpu_non_first_arg" | ||
if evaluator_config.enable_cpu_cache_flush | ||
else "", | ||
) | ||
repeated_costs: List[List[float]] = [] | ||
for args in repeated_args: | ||
profile_result = eval(*args) | ||
repeated_costs.append(profile_result.results) | ||
|
||
costs = [float(cost) for cost in itertools.chain.from_iterable(repeated_costs)] | ||
return costs | ||
|
||
runner = LocalRunner( | ||
evaluator_config=evaluator_config, | ||
f_run_evaluator=eval_func, | ||
) | ||
|
||
# Run the module | ||
(runner_future,) = runner.run([runner_input]) | ||
runner_result = runner_future.result() | ||
assert runner_result is not None | ||
assert runner_result.run_secs is not None | ||
assert runner_result.error_msg is None | ||
|
||
for result in runner_result.run_secs: | ||
if isinstance(result, FloatImm): | ||
result = result.value | ||
assert isinstance(result, float) | ||
assert result >= 0.0 | ||
|
||
else: | ||
# Without meta_schedule | ||
if use_trt: | ||
mod, config = tensorrt.partition_for_tensorrt(mod) | ||
with tvm.transform.PassContext( | ||
opt_level=3, config={"relay.ext.tensorrt.options": config} | ||
): | ||
func = relay.create_executor( | ||
mode, mod=mod, device=tvm.cuda(0), target="cuda" | ||
).evaluate() | ||
else: | ||
with tvm.transform.PassContext(opt_level=3): | ||
func = relay.create_executor( | ||
mode, mod=mod, device=tvm.cuda(0), target="cuda", params=params | ||
).evaluate() | ||
|
||
|
||
@tvm.testing.requires_cuda | ||
@has_tensorrt_codegen | ||
@has_tensorrt_runtime | ||
def test_conv2d_relu(): | ||
data_shape = (1, 1280, 14, 14) | ||
out_channels = 256 | ||
kernel_size, strides, padding, dilation, groups = (1, 1), (1, 1), (0, 0, 0, 0), (1, 1), 1 | ||
data_layout, kernel_layout = "NCHW", "OIHW" | ||
dtype = "float32" | ||
|
||
f = get_conv2d_relu( | ||
data_shape, | ||
out_channels, | ||
kernel_size, | ||
strides, | ||
padding, | ||
dilation, | ||
groups, | ||
data_layout, | ||
kernel_layout, | ||
dtype, | ||
) | ||
|
||
mod, params = testing.create_workload(f) | ||
verify_meta_schedule_with_tensorrt(mod, params, data_shape) | ||
|
||
|
||
@tvm.testing.requires_cuda | ||
@has_tensorrt_codegen | ||
@has_tensorrt_runtime | ||
@pytest.mark.parametrize( | ||
"model_name", | ||
["resnet-50", "mobilenet"], | ||
) | ||
@pytest.mark.parametrize("batch_size", [1]) | ||
@pytest.mark.parametrize("use_meta_sched", [True]) | ||
@pytest.mark.parametrize("use_trt", [True, False]) | ||
def test_relay_model(model_name: str, batch_size: int, use_meta_sched: bool, use_trt: bool): | ||
|
||
mod, params, input_shape, output_shape = get_network(name=model_name, batch_size=batch_size) | ||
verify_meta_schedule_with_tensorrt( | ||
mod, params, input_shape, use_meta_sched=use_meta_sched, use_trt=use_trt, mode="vm" | ||
) | ||
|
||
|
||
if __name__ == "__main__": | ||
sys.exit(pytest.main([__file__] + sys.argv[1:])) |