Skip to content

Commit

Permalink
[MetaSchedule][M4b] Testcases for TensorRT builder/runner (#10055)
Browse files Browse the repository at this point in the history
Co-authored-by: Siyuan Feng <[email protected]>
Co-authored-by: Bohan Hou <[email protected]>
Co-authored-by: Hongyi Jin <[email protected]>
Co-authored-by: Ruihang Lai <[email protected]>
Co-authored-by: Junru Shao <[email protected]>
Co-authored-by: Xiyou Zhou <[email protected]>
  • Loading branch information
7 people authored Jan 29, 2022
1 parent 0fb5ae2 commit ba65197
Show file tree
Hide file tree
Showing 3 changed files with 282 additions and 0 deletions.
1 change: 1 addition & 0 deletions python/tvm/meta_schedule/testing/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,3 +17,4 @@
"""Testing utilities in meta schedule"""
from .local_rpc import LocalRPC
from .relay_workload import get_network
from .byoc_trt import relay_build_with_tensorrt
53 changes: 53 additions & 0 deletions python/tvm/meta_schedule/testing/byoc_trt.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,53 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""TensorRT-MetaSchedule integration"""
# pylint: disable=import-outside-toplevel

from typing import List
import tvm
from tvm.runtime import Module
from tvm.meta_schedule.builder import BuilderResult
from tvm.target import Target


def relay_build_with_tensorrt(
mod: Module,
target: Target,
params: dict,
) -> List[BuilderResult]:
"""Build a Relay IRModule with TensorRT BYOC
Parameters
----------
mod : IRModule
The Relay IRModule to build.
target : Target
The target to build the module for.
params : Dict[str, NDArray]
The parameter dict to build the module with.
Returns
-------
mod : runtime.Module
The built module.
"""
from tvm.relay.op.contrib.tensorrt import partition_for_tensorrt

assert isinstance(target, Target)
mod, config = partition_for_tensorrt(mod, params)
with tvm.transform.PassContext(opt_level=3, config={"relay.ext.tensorrt.options": config}):
result = tvm.relay.build_module._build_module_no_factory(mod, "cuda", "llvm", params)
assert isinstance(result, Module)
return result
228 changes: 228 additions & 0 deletions tests/python/unittest/test_meta_schedule_byoc_tensorrt.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,228 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
""" Test Meta Schedule Builder """
import sys
import pytest
import itertools
import tvm
from tvm import relay
from tvm.relay import testing
from tvm.relay.op.contrib import tensorrt
import numpy as np
from typing import List
from tvm._ffi import register_func
from tvm.target import Target
from tvm.runtime import Module
from tvm.meta_schedule.arg_info import TensorInfo
from tvm.meta_schedule.builder import BuilderInput, LocalBuilder, BuilderResult
from tvm.meta_schedule.runner import (
EvaluatorConfig,
LocalRunner,
RunnerInput,
)

from tvm.tir import FloatImm
from tvm.meta_schedule.testing import get_network

has_tensorrt_codegen = pytest.mark.skipif(
not tvm.get_global_func("relay.ext.tensorrt", True), reason="TensorRT codegen not available"
)
has_tensorrt_runtime = pytest.mark.skipif(
not tensorrt.is_tensorrt_runtime_enabled(), reason="TensorRT runtime not available"
)


# conv2d+relu network
def get_conv2d_relu(
data_shape,
out_channels,
kernel_size,
strides,
padding,
dilation,
groups,
data_layout,
kernel_layout,
dtype,
):

data = relay.var("data", relay.TensorType(data_shape, dtype))
weight = relay.var("weight")

net = relay.nn.conv2d(
data=data,
weight=weight, # conv kernel
strides=strides,
padding=padding,
dilation=dilation,
groups=groups,
channels=out_channels,
kernel_size=kernel_size,
data_layout=data_layout,
kernel_layout=kernel_layout,
)
net = relay.add(net, net)
net = relay.nn.relu(net)

inputs = relay.analysis.free_vars(net)
return relay.Function(inputs, net)


def verify_meta_schedule_with_tensorrt(
mod, params, data_shape, use_meta_sched: bool = True, use_trt: bool = True, mode: str = "vm"
):
if use_meta_sched:
# With meta_schedule
dev = "cuda"

# Build
if use_trt:
from tvm.meta_schedule.testing import relay_build_with_tensorrt

builder = LocalBuilder(f_build=relay_build_with_tensorrt)
else:

def relay_build_without_tensorrt(
mod: Module,
target: Target,
params: dict,
) -> List[BuilderResult]:
return tvm.relay.build_module._build_module_no_factory(mod, "cuda", "llvm", params)

builder = LocalBuilder(f_build=relay_build_without_tensorrt)

builder_input = BuilderInput(mod, Target(dev, host="llvm"), params)

(builder_result,) = builder.build([builder_input])
assert builder_result.error_msg is None
assert builder_result.artifact_path is not None

# Run
evaluator_config = EvaluatorConfig(
number=5,
repeat=2,
min_repeat_ms=0,
enable_cpu_cache_flush=False,
)

runner_input = RunnerInput(
builder_result.artifact_path, "cuda", [TensorInfo("float32", data_shape)]
)

def eval_func(rt_mod, device, evaluator_config, repeated_args):
rt_mod = tvm.contrib.graph_executor.GraphModule(rt_mod["default"](device))

eval = rt_mod.module.time_evaluator(
func_name="run",
dev=device,
number=evaluator_config.number,
repeat=evaluator_config.repeat,
min_repeat_ms=evaluator_config.min_repeat_ms,
f_preproc="cache_flush_cpu_non_first_arg"
if evaluator_config.enable_cpu_cache_flush
else "",
)
repeated_costs: List[List[float]] = []
for args in repeated_args:
profile_result = eval(*args)
repeated_costs.append(profile_result.results)

costs = [float(cost) for cost in itertools.chain.from_iterable(repeated_costs)]
return costs

runner = LocalRunner(
evaluator_config=evaluator_config,
f_run_evaluator=eval_func,
)

# Run the module
(runner_future,) = runner.run([runner_input])
runner_result = runner_future.result()
assert runner_result is not None
assert runner_result.run_secs is not None
assert runner_result.error_msg is None

for result in runner_result.run_secs:
if isinstance(result, FloatImm):
result = result.value
assert isinstance(result, float)
assert result >= 0.0

else:
# Without meta_schedule
if use_trt:
mod, config = tensorrt.partition_for_tensorrt(mod)
with tvm.transform.PassContext(
opt_level=3, config={"relay.ext.tensorrt.options": config}
):
func = relay.create_executor(
mode, mod=mod, device=tvm.cuda(0), target="cuda"
).evaluate()
else:
with tvm.transform.PassContext(opt_level=3):
func = relay.create_executor(
mode, mod=mod, device=tvm.cuda(0), target="cuda", params=params
).evaluate()


@tvm.testing.requires_cuda
@has_tensorrt_codegen
@has_tensorrt_runtime
def test_conv2d_relu():
data_shape = (1, 1280, 14, 14)
out_channels = 256
kernel_size, strides, padding, dilation, groups = (1, 1), (1, 1), (0, 0, 0, 0), (1, 1), 1
data_layout, kernel_layout = "NCHW", "OIHW"
dtype = "float32"

f = get_conv2d_relu(
data_shape,
out_channels,
kernel_size,
strides,
padding,
dilation,
groups,
data_layout,
kernel_layout,
dtype,
)

mod, params = testing.create_workload(f)
verify_meta_schedule_with_tensorrt(mod, params, data_shape)


@tvm.testing.requires_cuda
@has_tensorrt_codegen
@has_tensorrt_runtime
@pytest.mark.parametrize(
"model_name",
["resnet-50", "mobilenet"],
)
@pytest.mark.parametrize("batch_size", [1])
@pytest.mark.parametrize("use_meta_sched", [True])
@pytest.mark.parametrize("use_trt", [True, False])
def test_relay_model(model_name: str, batch_size: int, use_meta_sched: bool, use_trt: bool):

mod, params, input_shape, output_shape = get_network(name=model_name, batch_size=batch_size)
verify_meta_schedule_with_tensorrt(
mod, params, input_shape, use_meta_sched=use_meta_sched, use_trt=use_trt, mode="vm"
)


if __name__ == "__main__":
sys.exit(pytest.main([__file__] + sys.argv[1:]))

0 comments on commit ba65197

Please sign in to comment.