Skip to content

Commit

Permalink
Move to Legalize API.
Browse files Browse the repository at this point in the history
  • Loading branch information
anijain2305 committed Aug 6, 2019
1 parent 47a5ce4 commit a4eecd5
Show file tree
Hide file tree
Showing 6 changed files with 189 additions and 324 deletions.
1 change: 0 additions & 1 deletion python/tvm/relay/qnn/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,4 +18,3 @@
"""QNN dialect operators and IR passes."""
from __future__ import absolute_import as _abs
from . import op
from . import transform
22 changes: 0 additions & 22 deletions python/tvm/relay/qnn/_transform.py

This file was deleted.

33 changes: 0 additions & 33 deletions python/tvm/relay/qnn/transform.py

This file was deleted.

202 changes: 188 additions & 14 deletions src/relay/qnn/op/requantize.cc
Original file line number Diff line number Diff line change
Expand Up @@ -23,9 +23,10 @@
* \brief QNN requantize operator.
*/

#include <tvm/relay/op_attr_types.h>
#include <tvm/relay/analysis.h>
#include <tvm/relay/op_attr_types.h>
#include <tvm/relay/qnn/attrs.h>
#include "../../pass/pattern_util.h"
#include "../util.h"

namespace tvm {
Expand All @@ -34,6 +35,185 @@ namespace qnn {

TVM_REGISTER_NODE_TYPE(RequantizeAttrs);

// Lowering of qnn.requantize op

/*
* \brief Convert FP32 representation into fixed point representation.
* \param double_multplier The input FP32 number.
* \return The pair of multiplier and shift for fixed point representation.
* \note Converts a floating point number so that it can be represented by
* integers. The representation is
* float_number = (significand) * 2^(exponent)
*
* The significand is a number between 0.5 and 1. This is represented by
* an integer number. For example, if it is int32, then the decimal point
* exists between bit 31 and 30 from LSB (or between first and second bit
* from the left).
*
* Some examples are
* 0.25 = (0.5) * 2^(-1)
* 0.125 = (0.5) * 2^(-2)
*
* Credit to TFLite reference implementation.
*/
std::pair<int32_t, int32_t> GetFixedPointMultiplierShift(double double_multiplier) {
int32_t significand, exponent;
if (double_multiplier == 0.) {
significand = 0;
exponent = 0;
return std::make_pair(significand, exponent);
}

// Get the significand and exponent.
double significand_d = std::frexp(double_multiplier, &exponent);

// Convert the double significand to int significand, i.e., convert into a
// integer where the decimal point is between bit 31 and 30. This is done by
// multiplying the double value with 2^31 and then casting to int.
significand_d = std::round(significand_d * (1ll << 31));
auto significand_int64 = static_cast<int64_t>(significand_d);
CHECK_LE(significand_int64, (1ll << 31));
if (significand_int64 == (1ll << 31)) {
significand_int64 /= 2;
++exponent;
}
CHECK_LE(significand_int64, std::numeric_limits<int32_t>::max());
significand = static_cast<int32_t>(significand_int64);
return std::make_pair(significand, exponent);
}

/*
* \brief Lower requantize to a sequence of ops.
* \param input_tensor The input tensor to requantize op.
* \param param The requantize op attrs.
* \param input_shape The input tensor shape of the requantize op.
* \return The sequence of existing Relay ops.
* \note Requantization using only integer computation. Here, the computation is
* converted to a fixed point computation by computing output multiplier
* and shift. This is useful, if the target device does not support/have
* very expensive floating point computations.
*
* Original compuation is scale_fp32 * quantized_tensor. To convert into
* integer computation, the multiplication with fp32 scalar can be
* replaced by multiplication with an int value and then right shifting
* the result. This approximates the floating point computation with a
* fixed point computation.
*
* The whole computation this can be broken down into following steps
* 1) Calculate the integer multiplier and integer shift.
* 2) Subtract the input integer zero point.
* 3) Multiply the fixed point multiplier with quantized tensor.
* 4) Round the result.
* 5) Right shift the result.
* 6) Add the output zero point.
* 7) Cast to the out_dtype.
*/
Expr RequantizeLower(const Expr& input_tensor, const RequantizeAttrs* param,
const Array<IndexExpr>& input_shape) {
double double_multiplier = param->input_scale / param->output_scale;

// Choose high precision datatype to be int64. This is for avoiding overflow
// in multiplication of two int32 values.
DataType hp_dtype = Int(64);

// 1) Calculating the integer multiplier and integer shift
int32_t fixed_point_multiplier, shift;
std::tie(fixed_point_multiplier, shift) = GetFixedPointMultiplierShift(double_multiplier);
int left_shift = shift > 0 ? shift : 0;
int right_shift = shift > 0 ? 0 : -shift;

// 2) Subtract the input_zero_point
auto tensor = Cast(input_tensor, hp_dtype);
if (param->input_zero_point != 0) {
auto input_zp = MakeConstantScalar(hp_dtype, param->input_zero_point);
tensor = Subtract(tensor, input_zp);
}

// 3) Multiply the integer multiplier
if (left_shift != 0) {
tensor = Multiply(tensor, MakeConstantScalar(hp_dtype, 1 << left_shift));
}
// Perform the multiplication in higher precision.
// The scalar is a fixed point value of int32 where the decimal point is
// between bits 31 and 30. After multiplying with input_tensor, the result is
// in int64 where the decimal point is sitting between bits 31 and 30 (from
// the right, rightmost bit is bit 0). The computation is performed in higher
// precision to avoid overflow in multiplying two int32 values.
Expr scalar = MakeConstantScalar(hp_dtype, fixed_point_multiplier);
auto multiplied_t = Multiply(tensor, scalar);

// 4) Find the rounding scalar. This depends on where the final decimal point
// sits. As we will be right shifting the multiplied_t, we need to first
// calculate the total_right_shift.
int total_right_shift = right_shift + 31;
int64_t pos_rounding_value = (1ll << (total_right_shift - 1));

tensor = multiplied_t;
Expr round_scalar;
if (param->rounding == "UPWARD") {
round_scalar = MakeConstantScalar(hp_dtype, pos_rounding_value);
} else if (param->rounding == "TONEAREST") {
auto pos_rounder = MakeConstantScalar(hp_dtype, pos_rounding_value);
auto neg_rounder = MakeConstantScalar(hp_dtype, pos_rounding_value - 1);
auto pos_rounder_t = Full(pos_rounder, input_shape, hp_dtype);
auto neg_rounder_t = Full(neg_rounder, input_shape, hp_dtype);

auto zero = MakeConstantScalar(hp_dtype, 0);
auto zero_t = Full(zero, input_shape, hp_dtype);
round_scalar = Where(GreaterEqual(tensor, zero_t), pos_rounder_t, neg_rounder_t);
}
// Add the rounding scalar.
tensor = Add(tensor, round_scalar);

// 5) Simply right shift the result to get the final output.
auto scaled_int64_t = RightShift(tensor, MakeConstantScalar(hp_dtype, total_right_shift));

// 6) Add the output zero point.
auto output_zp = MakeConstantScalar(hp_dtype, param->output_zero_point);
auto shifted_int64_t = Add(output_zp, scaled_int64_t);

// 7) Clip to the out_dtype min/max.
auto q_min = GetQmin(param->out_dtype);
auto q_max = GetQmax(param->out_dtype);
auto clipped_t = Clip(shifted_int64_t, q_min, q_max);
return Cast(clipped_t, param->out_dtype);
}

/*
* \brief Forward rewrite the requantize op.
* \param ref_call The original call that will be lowered.
* \param new_args The new mutated args to the call node.
* \param ctx The node context.
* \return The sequence of Relay ops for requantize op.
* \note Lowering of the requantize operation. The requantize operator converts
* one quantized tensor to another quantized tensor. For the output
* tensor, we are provided with output scale and zero point. The
* computation looks like this
*
* Q_output = zp_output + (scale_input)/(scale_ouptut) * (Q_input - zp_input)
*/
Expr RequantizeLegalize(const Attrs& attrs, const Array<Expr>& new_args,
const Array<tvm::relay::Type>& arg_types) {
CHECK_EQ(new_args.size(), 1);
auto& quantized_data = new_args[0];
const auto* param = attrs.as<RequantizeAttrs>();
CHECK(param != nullptr);

// Find input shape.
CHECK_EQ(arg_types.size(), 1);
auto input_dtype = arg_types[0];
auto input_tensor_type = input_dtype.as<TensorTypeNode>();
CHECK(input_tensor_type != nullptr) << "Type information missing."
<< " Please run infer_type pass.";
Array<IndexExpr> input_shape = input_tensor_type->shape;

// Check rounding validity.
CHECK(param->rounding == "UPWARD" || param->rounding == "TONEAREST")
<< "QNN requantize supports two rounding modes - UPWARD and "
<< "TONEAREST";
return RequantizeLower(quantized_data, param, input_shape);
}

/*
* \brief Infer shape function of Requantize op.
* \param types The types of input args.
Expand All @@ -42,35 +222,28 @@ TVM_REGISTER_NODE_TYPE(RequantizeAttrs);
* \param reporter The type reporter that sets the dtype and shapes.
* \return True if the infer shape succeeded.
*/
bool RequantizeRel(const Array<Type>& types,
int num_inputs,
const Attrs& attrs,
bool RequantizeRel(const Array<Type>& types, int num_inputs, const Attrs& attrs,
const TypeReporter& reporter) {
CHECK_EQ(types.size(), 2);
const auto* data = types[0].as<TensorTypeNode>();
const auto in_dtype = data->dtype;
CHECK(in_dtype == Int(8) || in_dtype == UInt(8) || in_dtype == Int(32))
<< "Input type should be an integer but was " << in_dtype;
<< "Input type should be an integer but was " << in_dtype;

const Array<tvm::Expr> oshape = data->shape;
// assign output type
const RequantizeAttrs* param = attrs.as<RequantizeAttrs>();
auto out_dtype = param->out_dtype;
CHECK(out_dtype == Int(8) || out_dtype == UInt(8) || out_dtype == Int(32))
<< "Output type should be an integer but was " << out_dtype;
<< "Output type should be an integer but was " << out_dtype;
reporter->Assign(types[1], TensorTypeNode::make(oshape, out_dtype));
return true;
}

// Positional relay function to create qnn requantize operator
// used by frontend FFI.
Expr MakeRequantize(Expr data,
double input_scale,
int32_t input_zero_point,
double output_scale,
int32_t output_zero_point,
std::string rounding,
DataType out_dtype) {
Expr MakeRequantize(Expr data, double input_scale, int32_t input_zero_point, double output_scale,
int32_t output_zero_point, std::string rounding, DataType out_dtype) {
auto attrs = make_node<RequantizeAttrs>();
attrs->input_scale = std::move(input_scale);
attrs->input_zero_point = std::move(input_zero_point);
Expand All @@ -95,7 +268,8 @@ Q_output = zp_output + (scale_input)/(scale_ouptut) * (Q_input - zp_input)
.set_num_inputs(1)
.add_argument("data", "Tensor", "The quantized input tensor.")
.set_support_level(11)
.add_type_rel("Requantize", RequantizeRel);
.add_type_rel("Requantize", RequantizeRel)
.set_attr<FTVMLegalize>("FTVMLegalize", RequantizeLegalize);

TVM_REGISTER_API("relay.qnn.op._make.requantize")
.set_body_typed(MakeRequantize);
Expand Down
Loading

0 comments on commit a4eecd5

Please sign in to comment.