-
Notifications
You must be signed in to change notification settings - Fork 3.5k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Adding support for Mxnet flavored dequantization for both default a…
…nd using MKLDNN. User can choose between the two at runtime. (#3945) - Added tests for new methods added.
- Loading branch information
Showing
3 changed files
with
389 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,246 @@ | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. | ||
# pylint: disable=invalid-name, import-self, len-as-condition, no-else-return | ||
"""MXNet qnn dialect helper methods for MXNet specific implementations of more | ||
generic qnn supported ops. | ||
""" | ||
|
||
import numpy as np | ||
from tvm.relay.qnn.op.qnn import dequantize | ||
|
||
zero_centered_uint8_quantized_range = np.float32(255) | ||
zero_centered_int8_quantized_range = np.float32(127) | ||
|
||
|
||
def _dequantize_zero_centered(data, | ||
data_min, | ||
data_max, | ||
quantized_range): | ||
r"""Dequantizes the given data tensor by calculating the scale | ||
using the MKLDNN formula `max(abs(data_min, data_max))/quantized_range`. | ||
Where quantized_range is 255 for uint8 and 127 for int8. The `data_min` | ||
and `data_max` are the min and max to use for the `data` tensor elements. | ||
Parameters | ||
---------- | ||
data : tvm.relay.Expr | ||
The input tensor to be quantized. Can be of type {int8 or uint8}. | ||
data_min : float | ||
The minimum to use data elements. | ||
data_max : float | ||
The maximum to use for data elements. | ||
quantized_range : float | ||
255 for uint8 and 127 for int8. This is the data type range. | ||
Returns | ||
------- | ||
result : tvm.relay.Expr | ||
The computed result. | ||
""" | ||
|
||
real_range = np.max([np.abs(np.float32(data_min)), | ||
np.abs(np.float32(data_max))]) | ||
scale = np.divide(real_range, quantized_range) | ||
zero_point = 0 | ||
return dequantize(data, scale, zero_point) | ||
|
||
|
||
def _dequantize_mkldnn_min_max_int8(data, | ||
imin_range, | ||
imax_range): | ||
r"""Dequantizes the given `data` in {int8 or uint8} and the given | ||
min and max ranges and the output data type is `float32`. | ||
The method of dequantizing is described here - https://tinyurl.com/y5k6fz5w. | ||
We use our default quantize implementation from src/relay/qnn/op/dequantize.cc:67 | ||
but compute the `scale` and `zero_point` to fit our equation. | ||
Unlike in TFLite where we get the scale and zero_point from the model, MKLDNN | ||
stores the min and max from which we calculate the scale and zero_point. | ||
Parameters | ||
---------- | ||
data : tvm.relay.Expr | ||
The input tensor to be quantized. Can be of type float32. | ||
imin_range : float | ||
The minimum to use data elements. | ||
imax_range : float | ||
The maximum to use for data elements. | ||
Returns | ||
------- | ||
result : tvm.relay.Expr | ||
The computed result. | ||
""" | ||
|
||
return _dequantize_zero_centered(data, | ||
data_min=imin_range, | ||
data_max=imax_range, | ||
quantized_range=zero_centered_int8_quantized_range) | ||
|
||
|
||
def _dequantize_mkldnn_min_max_uint8(data, | ||
imin_range, | ||
imax_range): | ||
r"""Dequantizes the given `data` in {int8 or uint8} and the given | ||
min and max ranges and the output data type is `float32`. | ||
The method of dequantize is described here - https://tinyurl.com/y5k6fz5w. | ||
We use our default quantize implementation from src/relay/qnn/op/dequantize.cc:67 | ||
but compute the `scale` and `zero_point` to fit our equation. | ||
Unlike in TFLite where we get the scale and zero_point from the model, MKLDNN | ||
stores the min and max from which we calculate the scale and zero_point. | ||
Parameters | ||
---------- | ||
data : tvm.relay.Expr | ||
The input tensor to be quantized. Can be of type float32. | ||
imin_range : float | ||
The minimum to use data elements. | ||
imax_range : float | ||
The maximum to use for data elements. | ||
Returns | ||
------- | ||
result : tvm.relay.Expr | ||
The computed result. | ||
""" | ||
|
||
return _dequantize_zero_centered(data, | ||
data_min=imin_range, | ||
data_max=imax_range, | ||
quantized_range=zero_centered_uint8_quantized_range) | ||
|
||
|
||
def _dequantize_mxnet_min_max_int8(data, | ||
imin_range, | ||
imax_range): | ||
r"""Deuantizes the given `data` in {int8 or uint8} and the given | ||
min and max ranges and the output data type is `float32`. | ||
The method of dequantization is described here - https://tinyurl.com/y4d7hrzf. | ||
We use our default dequantize implementation from src/relay/qnn/op/dequantize.cc:67 | ||
but compute the `scale` and `zero_point` to fit our equation. | ||
Unlike in TFLite where we get the scale and zero_point from the model, Mxnet | ||
stores the min and max from which we calculate the scale and zero_point. | ||
Parameters | ||
---------- | ||
data : tvm.relay.Expr | ||
The input tensor to be quantized. Can be of type float32. | ||
imin_range : float | ||
The minimum to use data elements. | ||
imax_range : float | ||
The maximum to use for data elements. | ||
Returns | ||
------- | ||
result : tvm.relay.Expr | ||
The computed result. | ||
""" | ||
|
||
return _dequantize_zero_centered(data, | ||
data_min=imin_range, | ||
data_max=imax_range, | ||
quantized_range=zero_centered_int8_quantized_range) | ||
|
||
|
||
def _dequantize_mxnet_min_max_uint8(data, | ||
imin_range, | ||
imax_range): | ||
r"""Dequantizes the given `data` in {int8 or uint8} and the given | ||
min and max ranges and the output data type is `float32`. | ||
The method of dequantizing is described here - https://tinyurl.com/y4d7hrzf. | ||
We use our default quantize implementation from src/relay/qnn/op/dequantize.cc:67 | ||
but compute the `scale` and `zero_point` to fit our equation. | ||
Unlike in TFLite where we get the scale and zero_point from the model, Mxnet | ||
stores the min and max from which we calculate the scale and zero_point. | ||
Parameters | ||
---------- | ||
data : tvm.relay.Expr | ||
The input tensor to be quantized. Can be of type float32. | ||
imin_range : float | ||
The minimum to use data elements. | ||
imax_range : float | ||
The maximum to use for data elements. | ||
Returns | ||
------- | ||
result : tvm.relay.Expr | ||
The computed result. | ||
""" | ||
|
||
iinfo = np.iinfo(np.uint8) | ||
min_limit = np.float64(iinfo.min) | ||
max_limit = np.float64(iinfo.max) | ||
imin_range = np.float64(imin_range) | ||
imax_range = np.float64(imax_range) | ||
scale = np.divide((imax_range - imin_range), | ||
(max_limit - min_limit)) | ||
zero_point = np.int(-1 * np.divide(imin_range, scale)) | ||
return dequantize(data, scale, zero_point) | ||
|
||
|
||
def dequantize_mxnet_min_max(data, | ||
min_range, | ||
max_range, | ||
in_dtype='int8', | ||
use_mkldnn=False): | ||
r"""Dequantizes the given `data` in {int8 or uint8} and the given | ||
min and max ranges. The output data type is float32. | ||
Only `float32` is supported as output data types. | ||
The input data type is expected to be {int8 or uint8}. | ||
Mxnet has two different flavors for dequantization 1) Default 2)MKLDNN. | ||
To get the second one Mxnet must be built with MKLDNN during compile time. | ||
Users can choose either of the implementation for TVM runtime. | ||
The main difference between the two implementation is that MKLDNN is centered | ||
around 0 and the default implementation for uint8 is not. | ||
Parameters | ||
---------- | ||
data : tvm.relay.Expr | ||
The input tensor to be quantized. Can be of type float32. | ||
min_range : float | ||
The minimum to use data elements for the output. | ||
max_range : float | ||
The maximum to use for data elements for the output. | ||
in_dtype: str, optional | ||
The input data type, can be 'int8' or 'uint8' | ||
use_mkldnn: bool, optional | ||
If True then uses MKLDNN quantization implementation otherwise | ||
will use default implementation. | ||
Returns | ||
------- | ||
result : tvm.relay.Expr | ||
The computed result. | ||
""" | ||
|
||
if in_dtype == 'uint8': | ||
if use_mkldnn: | ||
return _dequantize_mkldnn_min_max_uint8(data, | ||
min_range, | ||
max_range) | ||
else: | ||
return _dequantize_mxnet_min_max_uint8(data, | ||
min_range, | ||
max_range) | ||
elif in_dtype == 'int8': | ||
if use_mkldnn: | ||
return _dequantize_mkldnn_min_max_int8(data, min_range, max_range) | ||
else: | ||
return _dequantize_mxnet_min_max_int8(data, min_range, max_range) | ||
else: | ||
raise ValueError( | ||
"Expected out_dtype to be int8 or uint8 but was %s" % in_dtype) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,142 @@ | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. | ||
|
||
import tvm | ||
import numpy as np | ||
from tvm import relay | ||
from tvm.contrib import graph_runtime | ||
|
||
|
||
def test_mxnet_dequantize_op(): | ||
|
||
def quantize_test_driver(in_dtype, quant_args, in_data, verify_output_data): | ||
shape = in_data.shape | ||
input_data = relay.var("input_data", shape=shape, dtype=in_dtype) | ||
min_range = quant_args['min_range'] | ||
max_range = quant_args['max_range'] | ||
quantized_output = \ | ||
relay.frontend.dequantize_mxnet_min_max(input_data, | ||
min_range=min_range, | ||
max_range=max_range, | ||
in_dtype=in_dtype) | ||
mod = relay.Function(relay.analysis.free_vars(quantized_output), quantized_output) | ||
mod = relay.Module.from_expr(mod) | ||
mod = relay.qnn.transform.CanonicalizeOps()(mod) | ||
with relay.build_config(opt_level=3): | ||
graph, lib, params = relay.build(mod, "llvm", params=None) | ||
rt_mod = graph_runtime.create(graph, lib, ctx=tvm.cpu(0)) | ||
rt_mod.set_input(input_data=in_data) | ||
rt_mod.set_input(**params) | ||
rt_mod.run() | ||
res = rt_mod.get_output(0).asnumpy() | ||
assert np.allclose(res, verify_output_data, ) | ||
assert res.dtype == np.float32 | ||
|
||
def test_uint8_to_float32(): | ||
data = np.array([0, 1, 2, 3, 4, 251, 252, 253, 254, 255]) \ | ||
.astype('uint8') \ | ||
.reshape((2, 5)) | ||
output = np.array([-63.5, -63, -62.5, -62, -61.5, 62, 62.5, 63, 63.5, 64]) \ | ||
.astype('float32') \ | ||
.reshape((2, 5)) | ||
quant_args = {"min_range": -63.5, "max_range": 64} | ||
quantize_test_driver(in_dtype='uint8', | ||
quant_args=quant_args, | ||
in_data=data, | ||
verify_output_data=output) | ||
|
||
def test_int8_to_float32(): | ||
data = np.array([-126, -125, -124, -123, -122, 123, 124, 125, 126, 127]) \ | ||
.astype('int8') \ | ||
.reshape((2, 5)) | ||
output = np.array([-63.496063, -62.992126, -62.48819, -61.984253, -61.480316, | ||
61.984253, 62.48819, 62.992126, 63.496063, 64.]) \ | ||
.astype('float32') \ | ||
.reshape((2, 5)) | ||
quant_args = {"min_range": -63.5, "max_range": 64} | ||
quantize_test_driver(in_dtype='int8', | ||
quant_args=quant_args, | ||
in_data=data, | ||
verify_output_data=output) | ||
|
||
test_uint8_to_float32() | ||
test_int8_to_float32() | ||
|
||
|
||
def test_mkldnn_dequantize_op(): | ||
|
||
def quantize_test_driver(in_dtype, quant_args, in_data, verify_output_data): | ||
shape = in_data.shape | ||
input_data = relay.var("input_data", shape=shape, dtype=in_dtype) | ||
min_range = quant_args['min_range'] | ||
max_range = quant_args['max_range'] | ||
quantized_output = \ | ||
relay.frontend.dequantize_mxnet_min_max(input_data, | ||
min_range=min_range, | ||
max_range=max_range, | ||
in_dtype=in_dtype, | ||
use_mkldnn=True) | ||
mod = relay.Function(relay.analysis.free_vars(quantized_output), quantized_output) | ||
mod = relay.Module.from_expr(mod) | ||
mod = relay.qnn.transform.CanonicalizeOps()(mod) | ||
with relay.build_config(opt_level=3): | ||
graph, lib, params = relay.build(mod, "llvm", params=None) | ||
rt_mod = graph_runtime.create(graph, lib, ctx=tvm.cpu(0)) | ||
rt_mod.set_input(input_data=in_data) | ||
rt_mod.set_input(**params) | ||
rt_mod.run() | ||
res = rt_mod.get_output(0).asnumpy() | ||
# print(res) | ||
# np.testing.assert_equal(res, verify_output_data) | ||
assert np.allclose(res, verify_output_data, ) | ||
assert res.dtype == np.float32 | ||
|
||
def test_uint8_to_float32(): | ||
data = np.array([0, 1, 2, 3, 4, 251, 252, 253, 254, 255]) \ | ||
.astype('uint8') \ | ||
.reshape((2, 5)) | ||
output = np.array([0., 0.2509804, 0.5019608, 0.75294125, 1.0039216, | ||
62.996082, 63.247063, 63.498043, 63.749023, 64.]) \ | ||
.astype('float32') \ | ||
.reshape((2, 5)) | ||
quant_args = {"min_range": -63.5, "max_range": 64} | ||
quantize_test_driver(in_dtype='uint8', | ||
quant_args=quant_args, | ||
in_data=data, | ||
verify_output_data=output) | ||
|
||
def test_int8_to_float32(): | ||
data = np.array([-126, -125, -124, -123, -122, 123, 124, 125, 126, 127]) \ | ||
.astype('int8') \ | ||
.reshape((2, 5)) | ||
output = np.array([-63.496063, -62.992126, -62.48819, -61.984253, -61.480316, | ||
61.984253, 62.48819, 62.992126, 63.496063, 64.]) \ | ||
.astype('float32') \ | ||
.reshape((2, 5)) | ||
quant_args = {"min_range": -63.5, "max_range": 64} | ||
quantize_test_driver(in_dtype='int8', | ||
quant_args=quant_args, | ||
in_data=data, | ||
verify_output_data=output) | ||
|
||
test_uint8_to_float32() | ||
test_int8_to_float32() | ||
|
||
|
||
if __name__ == "__main__": | ||
test_mxnet_dequantize_op() | ||
test_mkldnn_dequantize_op() |