Skip to content

Commit

Permalink
[TOPI][OP] Support Faster-RCNN Proposal OP on CPU (#4297)
Browse files Browse the repository at this point in the history
* Support Proposal operator on CPU.

* PyLint space issue

* PyLint space issue

* Pylint singleton-comparison issue
  • Loading branch information
FrozenGene authored and vinx13 committed Nov 13, 2019
1 parent e541c75 commit 8cd5cce
Show file tree
Hide file tree
Showing 3 changed files with 282 additions and 5 deletions.
2 changes: 1 addition & 1 deletion tests/python/relay/test_op_level5.py
Original file line number Diff line number Diff line change
Expand Up @@ -424,7 +424,7 @@ def verify_proposal(np_cls_prob, np_bbox_pred, np_im_info, np_out, attrs):

func = relay.Function([cls_prob, bbox_pred, im_info], z)
func = run_infer_type(func)
for target in ['cuda']:
for target in ['llvm', 'cuda']:
if not tvm.module.enabled(target):
print("Skip test because %s is not enabled." % target)
continue
Expand Down
283 changes: 280 additions & 3 deletions topi/python/topi/vision/rcnn/proposal.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,11 +14,12 @@
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# pylint: disable=invalid-name
# pylint: disable=invalid-name, singleton-comparison
"""Proposal operator"""
import math
import tvm

from ...util import get_const_tuple, get_const_int
from ...sort import argsort

def generate_anchor(ratio, scale, base_size):
"""Generate anchor"""
Expand Down Expand Up @@ -60,6 +61,261 @@ def reg_iou(x1, y1, x2, y2, dx1, dy1, dx2, dy2):
pred_y2 = y2 + dy2
return pred_x1, pred_y1, pred_x2, pred_y2

def predict_bbox_ir(cls_prob_buf, bbox_pred_buf, im_info_buf, out_buf, scales, ratios,
feature_stride, rpn_min_size, iou_loss):
"""Predict bounding boxes based on anchors, scores and deltas.
Parameters
----------
cls_prob_buf : tvm.schedule.Buffer
4-D with shape [batch, 2 * num_anchors, height, width]
bbox_pred_buf : tvm.schedule.Buffer
4-D with shape [batch, 4 * num_anchors, height, width]
im_info_buf : tvm.schedule.Buffer
2-D with shape [batch, 3]
out_buf : tvm.schedule.Buffer
3-D with shape [batch, num_bbox, 5]
The last dimension is in format of [w_start, h_start, w_end, h_end, score]
scales : list/tuple of float
Scales of anchor windoes.
ratios : list/tuple of float
Ratios of anchor windoes.
feature_stride : int
The size of the receptive field each unit in the convolution layer of the rpn, for example
the product of all stride's prior to this layer.
rpn_min_size : int
Minimum height or width in proposal.
iou_loss : bool
Usage of IoU loss.
Returns
-------
stmt : Stmt
The result IR statement.
"""
batch, num_anchors, height, width = get_const_tuple(cls_prob_buf.shape)
num_anchors //= 2
ib = tvm.ir_builder.create()

p_score = ib.buffer_ptr(cls_prob_buf)
p_delta = ib.buffer_ptr(bbox_pred_buf)
p_im_info = ib.buffer_ptr(im_info_buf)
p_out = ib.buffer_ptr(out_buf)

idxm = tvm.indexmod
idxd = tvm.indexdiv

with ib.for_range(0, batch * height * width) as tid:
w = idxm(tid, width)
h = idxm(idxd(tid, width), height)
b = idxd(idxd(tid, width), height)

for k in range(num_anchors):
out_index = tid * num_anchors + k
ratio = ratios[k // len(scales)]
scale = scales[k % len(scales)]
anchor = generate_anchor(ratio, scale, feature_stride)
im_height = p_im_info[b * 3]
im_width = p_im_info[b * 3 + 1]
x1 = anchor[0] + w * feature_stride
y1 = anchor[1] + h * feature_stride
x2 = anchor[2] + w * feature_stride
y2 = anchor[3] + h * feature_stride

delta = [p_delta[((((b * num_anchors + k) * 4 + i) * height + h) * width + w)]
for i in range(4)]
regression_func = reg_iou if iou_loss else reg_bbox
pred_x1, pred_y1, pred_x2, pred_y2 = regression_func(x1, y1, x2, y2, *delta)

pred_x1 = tvm.max(tvm.min(pred_x1, im_width - 1.0), 0.0)
pred_y1 = tvm.max(tvm.min(pred_y1, im_height - 1.0), 0.0)
pred_x2 = tvm.max(tvm.min(pred_x2, im_width - 1.0), 0.0)
pred_y2 = tvm.max(tvm.min(pred_y2, im_height - 1.0), 0.0)

real_height = (im_height / feature_stride).astype('int32')
real_width = (im_width / feature_stride).astype('int32')

bbox_w = pred_x2 - pred_x1 + 1.0
bbox_h = pred_y2 - pred_y1 + 1.0
min_size = p_im_info[b * 3 + 2] * rpn_min_size

pred_score = p_score[((b * num_anchors * 2 + num_anchors + k) * height + h) * width + w]
pred_score = tvm.expr.Select(tvm.any(h >= real_height, w >= real_width),
-1.0, pred_score)
p_out[out_index * 5 + 0] = pred_x1
p_out[out_index * 5 + 1] = pred_y1
p_out[out_index * 5 + 2] = pred_x2
p_out[out_index * 5 + 3] = pred_y2
p_out[out_index * 5 + 4] = pred_score

with ib.if_scope(tvm.any(bbox_w < min_size, bbox_h < min_size)):
p_out[out_index * 5 + 0] -= min_size / 2.0
p_out[out_index * 5 + 1] -= min_size / 2.0
p_out[out_index * 5 + 2] += min_size / 2.0
p_out[out_index * 5 + 3] += min_size / 2.0
p_out[out_index * 5 + 4] = -1.0

return ib.get()


def argsort_ir(data_buf, out_index_buf):
"""Batched odd-even transposition sort.
Parameters
----------
data_buf : tvm.schedule.Buffer
2-D with shape [batch, num_bbox]
out_index_buf : tvm.schedule.Buffer
2-D with shape [batch, num_bbox]. Indices of data in sorted order.
Returns
-------
stmt : Stmt
The result IR statement.
"""
batch, num_bbox = get_const_tuple(data_buf.shape)
ib = tvm.ir_builder.create()
p_data = ib.buffer_ptr(data_buf)
index_out = ib.buffer_ptr(out_index_buf)
temp_data = ib.allocate("float32", (1,), name="temp_data", scope="local")
temp_index = ib.allocate("int32", (1,), name="temp_index", scope="local")
idxm = tvm.indexmod
with ib.for_range(0, batch, for_type="unroll") as b:
start = b * num_bbox
for i in range(2):
with ib.for_range(0, (num_bbox + 1) // 2) as tid:
bbox_id = tid * 2 + i
with ib.if_scope(bbox_id < num_bbox):
index_out[start + bbox_id] = bbox_id
with ib.for_range(0, num_bbox) as k:
with ib.for_range(0, (num_bbox + 1) // 2) as tid:
offset = start + 2 * tid + idxm(k, 2)
with ib.if_scope(tvm.all(offset + 1 < num_bbox,
p_data[offset] < p_data[offset + 1])):
temp_data[0] = p_data[offset]
p_data[offset] = p_data[offset + 1]
p_data[offset + 1] = temp_data[0]
temp_index[0] = index_out[offset]
index_out[offset] = index_out[offset + 1]
index_out[offset + 1] = temp_index[0]
return ib.get()


def nms_ir(sorted_bbox_buf, out_buf, nms_threshold):
"""Non-maximum supression.
Parameters
----------
sorted_bbox_buf : tvm.schedule.Buffer
3-D with shape [batch, num_bbox, 5]. The last dimension is in format of
[w_start, h_start, w_end, h_end, score].
out_buf : tvm.schedule.Buffer
2-D with shape [batch, num_bbox]. Boolean mask of whether a bounding box should be removed.
nms_threshold : float
Non-maximum suppression threshold.
Returns
-------
stmt : Stmt
The result IR statement.
"""
def calculate_overlap(out_tensor, box_a_idx, box_b_idx):
"""Calculate overlap of two boxes.
"""
w = tvm.max(0.0, tvm.min(out_tensor[box_a_idx + 2], out_tensor[box_b_idx + 2])
- tvm.max(out_tensor[box_a_idx], out_tensor[box_b_idx]) + 1.0)
h = tvm.max(0.0, tvm.min(out_tensor[box_a_idx + 3], out_tensor[box_b_idx + 3])
- tvm.max(out_tensor[box_a_idx + 1], out_tensor[box_b_idx + 1]) + 1.0)
i = w * h
u = (out_tensor[box_a_idx + 2] - out_tensor[box_a_idx] + 1.0) * \
(out_tensor[box_a_idx + 3] - out_tensor[box_a_idx + 1] + 1.0) + \
(out_tensor[box_b_idx + 2] - out_tensor[box_b_idx] + 1.0) * \
(out_tensor[box_b_idx + 3] - out_tensor[box_b_idx + 1] + 1.0) - i
return i / u

batch, num_bbox = get_const_tuple(out_buf.shape)
ib = tvm.ir_builder.create()
p_data = ib.buffer_ptr(sorted_bbox_buf)
p_out = ib.buffer_ptr(out_buf)
with ib.for_range(0, batch, for_type="unroll", name="n") as b:
base_idx = b * num_bbox
for i in range(num_bbox):
p_out[base_idx + i] = False
with ib.for_range(0, num_bbox - 1) as l:
with ib.for_range(0, num_bbox) as i:
with ib.if_scope(tvm.all(i < num_bbox, i > l, p_out[base_idx + l] == False)):
iou = calculate_overlap(p_data, (base_idx + l) * 5, (base_idx + i) * 5)
with ib.if_scope(iou > nms_threshold):
p_out[base_idx + i] = True
return ib.get()


def prepare_output_ir(sorted_bbox_buf, remove_mask_buf, out_buf):
"""Copy output after applying nms to continuous memory.
Parameters
----------
sorted_bbox_buf : tvm.schedule.Buffer
3-D with shape [batch, num_bbox, 5]. The last dimension is in format of
[w_start, h_start, w_end, h_end, score].
remove_mask_buf : tvm.schedule.Buffer
2-D with shape [batch, num_bbox]. Boolean mask of whether a bounding box should be removed.
out_buf : tvm.schedule.Buffer
2-D with shape [batch * rpn_post_nms_top_n, 5]. The last dimension is in format of
[batch_index, w_start, h_start, w_end, h_end].
Returns
-------
stmt : Stmt
The result IR statement.
"""
batch, num_bbox, _ = get_const_tuple(sorted_bbox_buf.shape)
rpn_post_nms_top_n = get_const_int(out_buf.shape[0]) // batch
ib = tvm.ir_builder.create()
i = ib.allocate('int32', (batch,), 'i', scope='local')
p_sorted_bbox = ib.buffer_ptr(sorted_bbox_buf)
p_remove = ib.buffer_ptr(remove_mask_buf)
p_out = ib.buffer_ptr(out_buf)

nkeep = ib.allocate('int32', (batch,), 'nkeep', scope='local')

with ib.for_range(0, batch) as b:
nkeep[b] = 0
i[b] = 0

with ib.for_range(0, num_bbox) as j:
with ib.for_range(0, batch) as b:
with ib.if_scope(p_remove[b * num_bbox + j] == False):
nkeep[b] += 1
with ib.for_range(0, batch) as b:
with ib.if_scope(nkeep[b] > 0):
with ib.for_range(0, tvm.ceil(
tvm.const(rpn_post_nms_top_n, 'float32') / nkeep[b]).astype('int32')):
with ib.for_range(0, num_bbox) as j:
offset_j = (b * num_bbox + j) * 5
offset_i = (b * rpn_post_nms_top_n + i[b]) * 5
with ib.if_scope(tvm.all(i[b] < rpn_post_nms_top_n,
p_remove[(b*num_bbox+j)] == False)):
p_out[offset_i] = tvm.expr.Cast('float32', b)
with ib.for_range(0, 4, for_type='unroll') as k:
p_out[offset_i + k + 1] = p_sorted_bbox[offset_j + k]
i[b] = i[b] + 1

body = ib.get()
return body

@tvm.target.generic_func
def proposal(cls_prob, bbox_pred, im_info, scales, ratios, feature_stride, threshold,
Expand Down Expand Up @@ -109,4 +365,25 @@ def proposal(cls_prob, bbox_pred, im_info, scales, ratios, feature_stride, thres
[batch_index, w_start, h_start, w_end, h_end].
"""
# pylint: disable=unused-argument
raise ValueError("missing register for topi.vision.rcnn.proposal")
batch, _, height, width = get_const_tuple(cls_prob.shape)
num_anchors = len(scales) * len(ratios)
num_bbox = height * width * num_anchors
rpn_pre_nms_top_n = min(rpn_pre_nms_top_n, num_bbox) if rpn_pre_nms_top_n > 0 else num_bbox

bbox = tvm.extern((batch, num_bbox, 5), [cls_prob, bbox_pred, im_info], lambda ins, outs:
predict_bbox_ir(ins[0], ins[1], ins[2], outs[0], scales, ratios,
feature_stride, rpn_min_size, iou_loss),
dtype=bbox_pred.dtype)
score = tvm.compute((batch, num_bbox), lambda b, i: bbox[b, i, 4], tag='bbox_score')
valid_count_shape = (1,)
valid_count = tvm.compute(valid_count_shape, lambda i: num_bbox)
sorted_index = argsort(score, valid_count=valid_count, axis=1, is_ascend=False)
sorted_bbox = tvm.compute((batch, rpn_pre_nms_top_n, 5),
lambda b, i, j: bbox[b, sorted_index[b, i], j], tag='sorted_bbox')
nms_remove_mask = tvm.extern((batch, rpn_pre_nms_top_n), [sorted_bbox],
lambda ins, outs: nms_ir(ins[0], outs[0], threshold),
dtype='bool')
nms_out = tvm.extern((batch * rpn_post_nms_top_n, 5), [sorted_bbox, nms_remove_mask],
lambda ins, outs: prepare_output_ir(ins[0], ins[1], outs[0]),
dtype=sorted_bbox.dtype)
return nms_out
2 changes: 1 addition & 1 deletion topi/tests/python/test_topi_vision.py
Original file line number Diff line number Diff line change
Expand Up @@ -378,7 +378,7 @@ def check_device(device):
f(tvm_cls_prob, tvm_bbox_pred, tvm_im_info, tvm_out)
tvm.testing.assert_allclose(tvm_out.asnumpy(), np_out, rtol=1e-4)

for device in ['cuda']:
for device in ['llvm', 'cuda']:
check_device(device)


Expand Down

0 comments on commit 8cd5cce

Please sign in to comment.