-
Notifications
You must be signed in to change notification settings - Fork 3.5k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[VTA] Bringing group convolution support (#4421)
* group conv operator support for VTA * autotvm tuning script for group conv2d * lint fix * lint fix * lint fix * addressing comments
- Loading branch information
Showing
4 changed files
with
595 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,199 @@ | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. | ||
"""Group conv2D operator declaration and schedule registration for VTA.""" | ||
|
||
import numpy as np | ||
|
||
import tvm | ||
from tvm import autotvm | ||
import topi | ||
|
||
from ..environment import get_env | ||
|
||
@autotvm.register_topi_compute(topi.nn.group_conv2d_nchw, 'vta', 'direct') | ||
def packed_group_conv2d(cfg, | ||
data, | ||
kernel, | ||
strides, | ||
padding, | ||
dilation, | ||
group, | ||
out_dtype): | ||
""" Packed group conv2d nchw function.""" | ||
assert dilation == (1, 1) | ||
|
||
if padding[0]: | ||
pad_data = topi.nn.pad(data, [0, 0, padding[0], padding[1], 0, 0], name="pad_data") | ||
else: | ||
pad_data = data | ||
assert len(data.shape) == 6 | ||
assert len(kernel.shape) == 6 | ||
assert data.dtype == "int8", data.dtype | ||
assert kernel.dtype == "int8", kernel.dtype | ||
assert out_dtype == "int32", out_dtype | ||
|
||
oheight = topi.util.get_const_int((pad_data.shape[2] - kernel.shape[2]) // strides[0] + 1) | ||
owidth = topi.util.get_const_int((pad_data.shape[3] - kernel.shape[3]) // strides[1] + 1) | ||
oshape = (data.shape[0], kernel.shape[0], oheight, owidth, data.shape[4], kernel.shape[4]) | ||
|
||
ishape = topi.util.get_const_tuple(data.shape) | ||
kshape = topi.util.get_const_tuple(kernel.shape) | ||
assert group * kshape[1] == ishape[1] | ||
assert kshape[0] % group == 0 | ||
d_i = tvm.reduce_axis((0, kshape[2]), name='d_i') | ||
d_j = tvm.reduce_axis((0, kshape[3]), name='d_j') | ||
k_o = tvm.reduce_axis((0, kshape[1]), name='k_o') | ||
k_i = tvm.reduce_axis((0, kshape[-1]), name='k_i') | ||
hstride, wstride = strides | ||
out = tvm.compute( | ||
oshape, | ||
lambda b_o, c_o, i, j, b_i, c_i: tvm.sum( | ||
pad_data[b_o, c_o // (kshape[0] // group) * kshape[1] + k_o, i * hstride + d_i, | ||
j * wstride + d_j, b_i, k_i].astype(out_dtype) * | ||
kernel[c_o, k_o, d_i, d_j, c_i, k_i].astype(out_dtype), | ||
axis=[k_o, d_i, d_j, k_i]), | ||
name="res", tag="packed_group_conv2d") | ||
|
||
cfg.add_flop(2 * np.prod(topi.util.get_const_tuple(oshape)) * | ||
kshape[2] * kshape[3] * ishape[1] * kshape[-1]) | ||
|
||
return out | ||
|
||
|
||
@autotvm.register_topi_schedule(topi.generic.schedule_group_conv2d_nchw, 'vta', 'direct') | ||
def schedule_packed_group_conv2d(cfg, outs): | ||
""" Schedule the packed conv2d. | ||
""" | ||
assert len(outs) == 1 | ||
output = outs[0] | ||
const_ops = [] | ||
ewise_inputs = [] | ||
ewise_ops = [] | ||
conv2d_res = [] | ||
assert output.dtype == "int8" | ||
assert output.op.input_tensors[0].dtype == "int32" | ||
|
||
def _traverse(op): | ||
if topi.tag.is_broadcast(op.tag): | ||
if not op.same_as(output.op): | ||
if not op.axis: | ||
const_ops.append(op) | ||
else: | ||
ewise_ops.append(op) | ||
for tensor in op.input_tensors: | ||
if isinstance(tensor.op, tvm.tensor.PlaceholderOp): | ||
ewise_inputs.append((op, tensor)) | ||
else: | ||
_traverse(tensor.op) | ||
else: | ||
assert op.tag == "packed_group_conv2d" | ||
conv2d_res.append(op) | ||
|
||
_traverse(output.op) | ||
assert len(conv2d_res) == 1 | ||
conv2d_stage = conv2d_res[0].output(0) | ||
s = tvm.create_schedule(output.op) | ||
|
||
##### space definition begin ##### | ||
b, c_o, x_i, x_j, _, _ = s[conv2d_stage].op.axis | ||
c_i, _, _, _ = s[conv2d_stage].op.reduce_axis | ||
cfg.define_split('tile_b', b, num_outputs=2) | ||
cfg.define_split('tile_h', x_i, num_outputs=2) | ||
cfg.define_split('tile_w', x_j, num_outputs=2) | ||
cfg.define_split('tile_ci', c_i, num_outputs=2) | ||
cfg.define_split('tile_co', c_o, num_outputs=2) | ||
cfg.define_knob('oc_nthread', [1, 2]) | ||
cfg.define_knob('h_nthread', [1, 2]) | ||
###### space definition end ###### | ||
|
||
data, kernel = conv2d_stage.op.input_tensors | ||
if isinstance(data.op, tvm.tensor.ComputeOp) and "pad" in data.op.tag: | ||
temp = data.op.input_tensors[0] | ||
pad_data = data | ||
data = temp | ||
else: | ||
pad_data = None | ||
|
||
env = get_env() | ||
|
||
# setup pad | ||
if pad_data is not None: | ||
cdata = pad_data | ||
s[pad_data].set_scope(env.inp_scope) | ||
else: | ||
cdata = s.cache_read(data, env.inp_scope, [conv2d_stage]) | ||
ckernel = s.cache_read(kernel, env.wgt_scope, [conv2d_stage]) | ||
s[conv2d_stage].set_scope(env.acc_scope) | ||
|
||
# cache read input | ||
cache_read_ewise = [] | ||
for consumer, tensor in ewise_inputs: | ||
cache_read_ewise.append( | ||
s.cache_read(tensor, env.acc_scope, [consumer])) | ||
|
||
# set ewise scope | ||
for op in ewise_ops: | ||
s[op].set_scope(env.acc_scope) | ||
s[op].pragma(s[op].op.axis[0], env.alu) | ||
|
||
for op in const_ops: | ||
s[op].compute_inline() | ||
|
||
# tile | ||
x_bo, x_co, x_i, x_j, x_bi, x_ci = s[output].op.axis | ||
x_co0, x_co1 = cfg['tile_co'].apply(s, output, x_co) | ||
x_i0, x_i1 = cfg['tile_h'].apply(s, output, x_i) | ||
x_j0, x_j1 = cfg['tile_w'].apply(s, output, x_j) | ||
s[output].reorder(x_bo, x_i0, x_co0, x_j0, x_co1, x_i1, x_j1, x_bi, x_ci) | ||
store_pt = x_j0 | ||
|
||
# set all compute scopes | ||
s[conv2d_stage].compute_at(s[output], store_pt) | ||
for op in ewise_ops: | ||
s[op].compute_at(s[output], store_pt) | ||
|
||
for tensor in cache_read_ewise: | ||
s[tensor].compute_at(s[output], store_pt) | ||
s[tensor].pragma(s[tensor].op.axis[0], env.dma_copy) | ||
|
||
# virtual threading along output channel axes | ||
if cfg['oc_nthread'].val > 1: | ||
_, v_t = s[output].split(x_co0, factor=cfg['oc_nthread'].val) | ||
s[output].reorder(v_t, x_bo) | ||
s[output].bind(v_t, tvm.thread_axis("cthread")) | ||
|
||
# virtual threading along spatial rows | ||
if cfg['h_nthread'].val > 1: | ||
_, v_t = s[output].split(x_i0, factor=cfg['h_nthread'].val) | ||
s[output].reorder(v_t, x_bo) | ||
s[output].bind(v_t, tvm.thread_axis("cthread")) | ||
|
||
x_bo, x_co, x_i, x_j, x_bi, x_ci = s[conv2d_stage].op.axis | ||
k_o, d_i, d_j, k_i = s[conv2d_stage].op.reduce_axis | ||
s[conv2d_stage].reorder(x_bo, k_o, x_j, d_j, d_i, x_co, x_i, x_bi, x_ci, k_i) | ||
|
||
k_o, _ = cfg['tile_ci'].apply(s, conv2d_stage, k_o) | ||
s[cdata].compute_at(s[conv2d_stage], k_o) | ||
s[ckernel].compute_at(s[conv2d_stage], k_o) | ||
|
||
# Use VTA instructions | ||
s[cdata].pragma(s[cdata].op.axis[0], env.dma_copy) | ||
s[ckernel].pragma(s[ckernel].op.axis[0], env.dma_copy) | ||
s[conv2d_stage].tensorize(x_bi, env.gemm) | ||
s[output].pragma(x_co1, env.dma_copy) | ||
|
||
return s |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,155 @@ | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. | ||
|
||
"""Tuning a single group conv2d operator""" | ||
|
||
from collections import namedtuple | ||
import logging | ||
import os | ||
|
||
import tvm | ||
from tvm import autotvm | ||
from tvm.contrib.util import get_lower_ir | ||
import topi | ||
import vta | ||
import vta.testing | ||
|
||
env = vta.get_env() | ||
|
||
Workload = namedtuple("GroupConv2DWorkload", | ||
['batch', 'height', 'width', 'in_filter', 'out_filter', 'groups', | ||
'hkernel', 'wkernel', 'hpad', 'wpad', 'hstride', 'wstride']) | ||
|
||
# Mobilenet (grouped variant) workloads | ||
mobilenet_wkls = [ | ||
('mobilenet.D1', Workload(env.BATCH, 112, 112, 32, 32, 2, 3, 3, 1, 1, 1, 1)), | ||
('mobilenet.D2', Workload(env.BATCH, 112, 112, 64, 64, 4, 3, 3, 1, 1, 2, 2)), | ||
('mobilenet.D3', Workload(env.BATCH, 56, 56, 128, 128, 8, 3, 3, 1, 1, 1, 1)), | ||
('mobilenet.D4', Workload(env.BATCH, 56, 56, 128, 128, 8, 3, 3, 1, 1, 2, 2)), | ||
('mobilenet.D5', Workload(env.BATCH, 28, 28, 256, 256, 16, 3, 3, 1, 1, 1, 1)), | ||
('mobilenet.D6', Workload(env.BATCH, 28, 28, 256, 256, 16, 3, 3, 1, 1, 2, 2)), | ||
('mobilenet.D7', Workload(env.BATCH, 14, 14, 512, 512, 32, 3, 3, 1, 1, 1, 1)), | ||
('mobilenet.D8', Workload(env.BATCH, 14, 14, 512, 512, 32, 3, 3, 1, 1, 2, 2)), | ||
('mobilenet.D9', Workload(env.BATCH, 7, 7, 1024, 1024, 64, 3, 3, 1, 1, 1, 1)), | ||
] | ||
|
||
@tvm.tag_scope(tag=topi.tag.ELEMWISE) | ||
def my_clip(x, a_min, a_max): | ||
"""Unlike topi's current clip, put min and max into two stages.""" | ||
const_min = tvm.const(a_min, x.dtype) | ||
const_max = tvm.const(a_max, x.dtype) | ||
x = tvm.compute(x.shape, lambda *i: tvm.min(x(*i), const_max), name="clipA") | ||
x = tvm.compute(x.shape, lambda *i: tvm.max(x(*i), const_min), name="clipB") | ||
return x | ||
|
||
def group_conv2d(N, CI, H, W, CO, KH, KW, strides, padding, dilation, group): | ||
|
||
CI_G = CI // groups | ||
data_shape = (N//env.BATCH, CI//env.BLOCK_IN, H, W, env.BATCH, env.BLOCK_IN) | ||
kernel_shape = (CO//env.BLOCK_OUT, CI_G//env.BLOCK_IN, KH, KW, env.BLOCK_OUT, env.BLOCK_IN) | ||
bias_shape = (N//env.BATCH, CO//env.BLOCK_OUT, 1, 1, env.BATCH, env.BLOCK_OUT) | ||
|
||
data = tvm.placeholder(data_shape, name="data", dtype=env.inp_dtype) | ||
kernel = tvm.placeholder(kernel_shape, name="kernel", dtype=env.wgt_dtype) | ||
bias = tvm.placeholder(bias_shape, name="bias", dtype=env.acc_dtype) | ||
|
||
with tvm.target.vta(): | ||
res = topi.nn.group_conv2d_nchw( | ||
data, | ||
kernel, | ||
strides, | ||
padding, | ||
dilation, | ||
groups, | ||
env.acc_dtype) | ||
res = topi.right_shift(res, env.WGT_WIDTH) | ||
res = topi.add(res, bias) | ||
res = my_clip(res, 0, (1 << env.OUT_WIDTH - 1) - 1) | ||
res = topi.cast(res, env.out_dtype) | ||
|
||
if tvm.target.current_target().device_name == 'vta': | ||
s = topi.generic.schedule_group_conv2d_nchw([res]) | ||
else: | ||
s = tvm.create_schedule([res.op]) | ||
|
||
return s, [data, kernel, bias, res] | ||
|
||
if __name__ == '__main__': | ||
|
||
# Logging config (for printing tuning log to the screen) | ||
logging.basicConfig() | ||
|
||
# Tuning log files | ||
log_file = "%s.group_conv2d.log" % (env.TARGET) | ||
# create tmp log file | ||
tmp_log_file = log_file + ".tmp" | ||
if os.path.exists(log_file): | ||
os.remove(log_file) | ||
|
||
# Get tracker info from env | ||
tracker_host = os.environ.get("TVM_TRACKER_HOST", None) | ||
tracker_port = os.environ.get("TVM_TRACKER_PORT", None) | ||
if not tracker_host or not tracker_port: | ||
print("Set your AutoTVM tracker node host and port variables to run the autotuner") | ||
exit() | ||
|
||
for idx, (wl_name, wl) in enumerate(mobilenet_wkls): | ||
prefix = "[Task %2d/%2d] " % (idx, len(mobilenet_wkls)) | ||
|
||
# Read in workload parameters | ||
N = wl.batch | ||
CI = wl.in_filter | ||
H = wl.height | ||
W = wl.width | ||
CO = wl.out_filter | ||
KH = wl.hkernel | ||
KW = wl.wkernel | ||
strides = (wl.hstride, wl.wstride) | ||
padding = (wl.hpad, wl.wpad) | ||
dilation = (1, 1) | ||
groups = wl.groups | ||
|
||
# Create task | ||
task = autotvm.task.create( | ||
group_conv2d, | ||
args=(N, CI, H, W, CO, KH, KW, strides, padding, dilation, groups), | ||
target=tvm.target.vta(), | ||
target_host=env.target_host, | ||
template_key='direct') | ||
print(task.config_space) | ||
|
||
# Tune | ||
measure_option = autotvm.measure_option( | ||
builder=autotvm.LocalBuilder(), | ||
runner=autotvm.RPCRunner( | ||
env.TARGET, host=tracker_host, port=int(tracker_port), | ||
number=5, timeout=60, | ||
check_correctness=True)) | ||
|
||
# Run Tuner | ||
tuner = autotvm.tuner.RandomTuner(task) | ||
tuner.tune( | ||
n_trial=len(task.config_space), | ||
early_stopping=None, | ||
measure_option=measure_option, | ||
callbacks=[ | ||
autotvm.callback.progress_bar(len(task.config_space), prefix=prefix), | ||
autotvm.callback.log_to_file(tmp_log_file)]) | ||
|
||
# Pick best records to a cache file | ||
autotvm.record.pick_best(tmp_log_file, log_file) | ||
os.remove(tmp_log_file) |
Oops, something went wrong.