-
Notifications
You must be signed in to change notification settings - Fork 3.5k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
scatter elements was basically implemented for topi/cuda
- Loading branch information
Valery Chernov
committed
Feb 8, 2023
1 parent
bd94ecd
commit 6708902
Showing
2 changed files
with
158 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,157 @@ | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. | ||
# pylint: disable=invalid-name | ||
"""Scatter operator """ | ||
import tvm | ||
from tvm import te | ||
from tvm import tir | ||
from ..utils import ceil_div, get_const_int | ||
from ..math import cast | ||
|
||
|
||
def scatter_elements(data, indices, updates, axis=0, reduction="update"): | ||
"""Scatter elements from updates to corresponding indices of copied data. | ||
Data, indices, updates and output have the same shape. | ||
Indices can not have duplicates (if idx1 != idx2, then indices[idx1] != indices[idx2]) | ||
if reduction == "update". | ||
.. code-block:: | ||
output[indices[i][j]][j] = f(output[indices[i][j]][j], updates[i][j]) if axis = 0 | ||
output[i][indices[i][j]] = f(output[i][indices[i][j]], updates[i][j]) if axis = 1 | ||
where the update function f is determinted by the reduction. | ||
Five types of the function are supported: "update", "add", "mul", "min" and "max" (see below) | ||
Parameters | ||
---------- | ||
data : tvm.te.Tensor | ||
The source array. | ||
indices : tvm.te.Tensor | ||
The indices of the values to extract. | ||
updates : tvm.te.Tensor | ||
The updates to apply at the Indices | ||
axis : optional, int | ||
The axis to scatter on. It is zero by default. | ||
reduction : optional, string | ||
The update mode for the algorithm, either "update", "add", "mul", "min" or "max" | ||
If update, the update values will replace the input data | ||
If add, the update values will be added to the input data | ||
If mul, the update values will be multiply to the input data | ||
If min, there is choice of minimal between the update values and the input data | ||
If max, there is choice of maximal between the update values and the input data | ||
It is "update" by default | ||
Returns | ||
------- | ||
ret : tvm.te.Tensor | ||
""" | ||
if not isinstance(axis, int): | ||
axis = get_const_int(axis) | ||
|
||
shape = data.shape | ||
axis_range = cast(shape[axis], indices.dtype) | ||
|
||
if axis < 0: | ||
axis = len(shape) + axis | ||
|
||
# Prepare ranges and strides | ||
before_axis_range = 1 | ||
after_axis_range = 1 | ||
for i, value in enumerate(shape, 0): | ||
if i < axis: | ||
before_axis_range *= value | ||
elif i > axis: | ||
after_axis_range *= value | ||
before_axis_stride = axis_range * after_axis_range | ||
full_range = before_axis_range * before_axis_stride | ||
full_range_excl_axis = before_axis_range * after_axis_range | ||
|
||
def gen_ir(data_ptr, indices_ptr, updates_ptr, out_ptr): | ||
ib = tir.ir_builder.create() | ||
|
||
data = ib.buffer_ptr(data_ptr) | ||
indices = ib.buffer_ptr(indices_ptr) | ||
updates = ib.buffer_ptr(updates_ptr) | ||
out = ib.buffer_ptr(out_ptr) | ||
|
||
max_threads = int(tvm.target.Target.current(allow_none=False).max_num_threads) | ||
# Copy initial input data to output | ||
with ib.new_scope(): | ||
num_blocks = ceil_div(full_range, max_threads) | ||
bx = te.thread_axis("blockIdx.x") | ||
tx = te.thread_axis("threadIdx.x") | ||
ib.scope_attr(bx, "thread_extent", num_blocks) | ||
ib.scope_attr(tx, "thread_extent", max_threads) | ||
|
||
index = bx * max_threads + tx | ||
with ib.if_scope(index < full_range): | ||
out[index] = data[index] | ||
|
||
# TODO (vvchernov): use atomic function for special conditions (see cuda.scatter_nd) | ||
with ib.new_scope(): | ||
num_blocks_2 = ceil_div(full_range_excl_axis, max_threads) | ||
bx2 = te.thread_axis("blockIdx.x") | ||
tx2 = te.thread_axis("threadIdx.x") | ||
ib.scope_attr(bx2, "thread_extent", num_blocks_2) | ||
ib.scope_attr(tx2, "thread_extent", max_threads) | ||
|
||
fused = bx2 * max_threads + tx2 | ||
with ib.if_scope(fused < full_range_excl_axis): | ||
i = fused // after_axis_range | ||
j = fused % after_axis_range | ||
pre_index = i * before_axis_stride + j | ||
with ib.for_range(0, axis_range, "k") as k: | ||
index1 = pre_index + k * after_axis_range | ||
# TODO(vvchernov): assert for out of bounds, separated check for indices | ||
k_new = indices[index1] | ||
index_check = tir.LT(k_new, tir.const(0, indices.dtype)) | ||
k_new += tir.Select(index_check, axis_range, tir.const(0, indices.dtype)) | ||
index2 = pre_index + k_new * after_axis_range | ||
if reduction == "update": | ||
out[index2] = updates[index1] | ||
elif reduction == "add": | ||
out[index2] += updates[index1] | ||
elif reduction == "mul": | ||
out[index2] *= updates[index1] | ||
elif reduction == "min": | ||
tir.min(out[index2], updates[index1]) | ||
elif reduction == "max": | ||
tir.max(out[index2], updates[index1]) | ||
else: | ||
raise NotImplementedError( | ||
"scatter_elements reduction not in [update, add, mul, min, max]:", | ||
reduction, | ||
) | ||
|
||
return ib.get() | ||
|
||
out_buf = tir.decl_buffer(data.shape, data.dtype, "out_buf") | ||
return te.extern( | ||
[data.shape], | ||
[data, indices, updates], | ||
lambda ins, outs: gen_ir(ins[0], ins[1], ins[2], outs[0]), | ||
dtype=data.dtype, | ||
out_buffers=[out_buf], | ||
name="scatter_elements_cuda", | ||
tag="scatter_elements_cuda", | ||
) |