Skip to content

Commit

Permalink
add conv2d profiler
Browse files Browse the repository at this point in the history
  • Loading branch information
masahi committed Dec 10, 2021
1 parent b7ecfc6 commit 5db9b52
Show file tree
Hide file tree
Showing 2 changed files with 193 additions and 1 deletion.
182 changes: 182 additions & 0 deletions python/tvm/contrib/cutlass/conv2d_profiler.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,182 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# pylint: disable=import-outside-toplevel, invalid-name
"""Instantiate a C++ source for profiling CUTLASS kernels."""


class Conv2dProfilerEmitter(object):
"""Emit a C++ source for profiling CUTLASS kernels."""

def __init__(self):
from jinja2 import Template

self.template = Template(
"""
#include <iostream>
#include "cutlass/cutlass.h"
#include "cutlass/conv/kernel/default_conv2d_fprop.h"
#include "cutlass/conv/device/implicit_gemm_convolution.h"
#include "cutlass/util/command_line.h"
#include "cutlass/util/host_tensor.h"
#include "cutlass/util/reference/host/tensor_fill.h"
#include "helper.h"
{{OperatorDef}}
using ImplicitGemm = cutlass::conv::device::ImplicitGemmConvolution<{{OperatorName}}>;
struct Options {
cutlass::Tensor4DCoord input_size;
cutlass::Tensor4DCoord filter_size;
cutlass::Tensor4DCoord padding;
cutlass::MatrixCoord conv_stride;
cutlass::MatrixCoord dilation;
void parse(int argc, char const **args) {
cutlass::CommandLine cmd(argc, args);
cmd.get_cmd_line_argument("n", input_size.n());
cmd.get_cmd_line_argument("h", input_size.h());
cmd.get_cmd_line_argument("w", input_size.w());
cmd.get_cmd_line_argument("c", input_size.c());
cmd.get_cmd_line_argument("k", filter_size.n());
cmd.get_cmd_line_argument("r", filter_size.h());
cmd.get_cmd_line_argument("s", filter_size.w());
int pad_h, pad_w, stride_h, stride_w, dilation_h, dilation_w;
cmd.get_cmd_line_argument("pad_h", pad_h);
cmd.get_cmd_line_argument("pad_w", pad_w);
cmd.get_cmd_line_argument("stride_h", stride_h);
cmd.get_cmd_line_argument("stride_w", stride_w);
cmd.get_cmd_line_argument("dilation_h", dilation_h);
cmd.get_cmd_line_argument("dilation_w", dilation_w);
filter_size.c() = input_size.c();
padding = {pad_h, pad_h, pad_w, pad_w};
conv_stride = {stride_h, stride_w};
dilation = {dilation_h, dilation_w};
}
cutlass::Tensor4DCoord output_size() const {
auto dilated_h = (filter_size.h() - 1) * dilation.row() + 1;
auto dilated_w = (filter_size.w() - 1) * dilation.column() + 1;
auto h = (input_size.h() + padding.n() + padding.h() - dilated_h) / conv_stride.row() + 1;
auto w = (input_size.w() + padding.w() + padding.c() - dilated_w) / conv_stride.column() + 1;
return cutlass::Tensor4DCoord(
input_size.n(),
h, w,
filter_size.n());
}
};
double profile_convolution(Options const &options) {
using ElementOutput = typename ImplicitGemm::ElementC;
using ElementInputA = typename ImplicitGemm::ElementA;
using ElementInputB = typename ImplicitGemm::ElementB;
auto oshape = options.output_size();
cutlass::HostTensor<ElementInputA, typename ImplicitGemm::LayoutA> tensor_a(options.input_size);
cutlass::HostTensor<ElementInputB, typename ImplicitGemm::LayoutB> tensor_b(options.filter_size);
cutlass::HostTensor<ElementOutput, typename ImplicitGemm::LayoutC> tensor_c(oshape);
cutlass::HostTensor<ElementOutput, typename ImplicitGemm::LayoutC> tensor_ref_c(oshape);
cutlass::reference::host::TensorFillRandomUniform(
tensor_a.host_view(),
1,
ElementInputA(7),
ElementInputA(-8),
0);
cutlass::reference::host::TensorFillRandomUniform(
tensor_b.host_view(),
1,
ElementInputB(7),
ElementInputB(-8),
0);
cutlass::reference::host::TensorFill(
tensor_c.host_view());
cutlass::reference::host::TensorFill(
tensor_ref_c.host_view());
tensor_a.sync_device();
tensor_b.sync_device();
tensor_c.sync_device();
tensor_ref_c.sync_device();
cutlass::conv::Conv2dProblemSize problem_size(
options.input_size,
options.filter_size,
options.padding,
options.conv_stride,
options.dilation,
options.output_size(),
cutlass::conv::Mode::kCrossCorrelation,
1
);
using ElementComputeEpilogue = typename ImplicitGemm::ElementCompute;
typename ImplicitGemm::Arguments arguments{
problem_size,
tensor_a.device_ref(),
tensor_b.device_ref(),
tensor_c.device_ref(),
tensor_c.device_ref(),
{ElementComputeEpilogue(1), ElementComputeEpilogue(0)},
};
ImplicitGemm implicit_gemm_op;
size_t workspace_size = implicit_gemm_op.get_workspace_size(arguments);
cutlass::device_memory::allocation<uint8_t> workspace(workspace_size);
auto status = implicit_gemm_op.can_implement(arguments);
CUTLASS_CHECK(status);
status = implicit_gemm_op.initialize(arguments, workspace.get());
CUTLASS_CHECK(status);
status = implicit_gemm_op();
CUTLASS_CHECK(status);
cudaEvent_t events[2];
for (auto & event : events) {
cudaEventCreate(&event);
}
cudaEventRecord(events[0]);
for (int iteration = 0; iteration < 100; ++iteration) {
auto status = implicit_gemm_op();
CUTLASS_CHECK(status);
}
cudaEventRecord(events[1]);
cudaEventSynchronize(events[1]);
float runtime_ms = 0;
cudaEventElapsedTime(&runtime_ms, events[0], events[1]);
for (auto event : events) {
(void)cudaEventDestroy(event);
}
return double(runtime_ms) / 100.0;
}
int main(int argc, char const **args) {
Options options;
options.parse(argc, args);
std::cout << profile_convolution(options) << std::endl;
return 0;
}
"""
)

def emit(self, op_def, op_name):
src = self.template.render(OperatorDef=op_def, OperatorName=op_name)
return src
12 changes: 11 additions & 1 deletion python/tvm/contrib/cutlass/gen_conv2d.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,12 @@
"""Conv2d kernel generator and profiler for CUTLASS."""
from .conv2d_operation import Conv2dOperation, EmitConv2dInstance
from .gen_gemm import CutlassGemmProfiler
from .conv2d_profiler import Conv2dProfilerEmitter
from .gen_tensor_op import (
ProfilerEngine,
generate_sm75_tensor_op_1688,
generate_sm80_tensor_op_16816,
)
from .library import (
EpilogueFunctor,
SwizzlingFunctor,
Expand All @@ -39,6 +45,7 @@ def create_conv2d_operator(
ret = []

kernel_emitter = EmitConv2dInstance()
profiler_emitter = Conv2dProfilerEmitter()

element_a, element_b, element_c, element_epilogue = data_type
iterator_algorithms = [IteratorAlgorithm.Optimized]
Expand Down Expand Up @@ -75,6 +82,7 @@ def create_conv2d_operator(
# TODO(masahi): Add profiler source here
op_entry["opdef"] = kernel_emitter.emit(op)
op_entry["op"] = op
op_entry["src"] = profiler_emitter.emit(op_entry["opdef"], op.procedural_name())
op_entry["name"] = op.procedural_name()
op_entry["runtime"] = 9999999

Expand Down Expand Up @@ -144,4 +152,6 @@ def profile(
alignment = gemm_profile_result["alignment"]
data_type = gemm_profile_result["data_type"]

return create_conv2d_operator([tile_description], data_type, [alignment])[0]
out = create_conv2d_operator([tile_description], data_type, [alignment])[0]
print(out["src"])
return out

0 comments on commit 5db9b52

Please sign in to comment.