Skip to content

Commit

Permalink
[REFACTOR][RELAY] Replace build_config with PassContext
Browse files Browse the repository at this point in the history
  • Loading branch information
zhiics committed May 29, 2020
1 parent ddf7190 commit 504e8dd
Show file tree
Hide file tree
Showing 72 changed files with 119 additions and 114 deletions.
2 changes: 1 addition & 1 deletion apps/android_camera/models/prepare_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -87,7 +87,7 @@ def main(model_str, output_path):
except FileExistsError:
pass
print("building...")
with relay.build_config(opt_level=3):
with tvm.transform.PassContext(opt_level=3):
graph, lib, params = relay.build(net, target, target_host=target_host, params=params)
print("dumping lib...")
lib.export_library(output_path_str + '/' + 'deploy_lib_cpu.so', ndk.create_shared)
Expand Down
2 changes: 1 addition & 1 deletion apps/benchmark/arm_cpu_imagenet_bench.py
Original file line number Diff line number Diff line change
Expand Up @@ -39,7 +39,7 @@ def evaluate_network(network, target, target_host, repeat):
net, params, input_shape, output_shape = get_network(network, batch_size=1)

print_progress("%-20s building..." % network)
with relay.build_config(opt_level=3):
with tvm.transform.PassContext(opt_level=3):
graph, lib, params = relay.build(
net, target=target, target_host=target_host, params=params)

Expand Down
2 changes: 1 addition & 1 deletion apps/benchmark/gpu_imagenet_bench.py
Original file line number Diff line number Diff line change
Expand Up @@ -33,7 +33,7 @@
def benchmark(network, target):
net, params, input_shape, output_shape = get_network(network, batch_size=1)

with relay.build_config(opt_level=3):
with tvm.transform.PassContext(opt_level=3):
graph, lib, params = relay.build(net, target=target, params=params)

# create runtime
Expand Down
2 changes: 1 addition & 1 deletion apps/benchmark/mobile_gpu_imagenet_bench.py
Original file line number Diff line number Diff line change
Expand Up @@ -38,7 +38,7 @@ def evaluate_network(network, target, target_host, dtype, repeat):
net, params, input_shape, output_shape = get_network(network, batch_size=1, dtype=dtype)

print_progress("%-20s building..." % network)
with relay.build_config(opt_level=3):
with tvm.transform.PassContext(opt_level=3):
graph, lib, params = relay.build(
net, target=target, target_host=target_host, params=params)

Expand Down
2 changes: 1 addition & 1 deletion apps/bundle_deploy/build_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -33,7 +33,7 @@ def build_module(opts):
func = mod["main"]
func = relay.Function(func.params, relay.nn.softmax(func.body), None, func.type_params, func.attrs)

with relay.build_config(opt_level=3):
with tvm.transform.PassContext(opt_level=3):
graph, lib, params = relay.build(
func, 'llvm --system-lib', params=params)

Expand Down
2 changes: 1 addition & 1 deletion apps/sgx/src/build_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -37,7 +37,7 @@ def main():
net, params = relay.testing.resnet.get_workload(
layers=18, batch_size=dshape[0], image_shape=dshape[1:])

with relay.build_config(opt_level=3):
with tvm.transform.PassContext(opt_level=3):
graph, lib, params = relay.build(
net, 'llvm --system-lib', params=params)

Expand Down
4 changes: 2 additions & 2 deletions golang/sample/gen_mobilenet_lib.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,7 @@
# under the License.

import os
from tvm import relay
from tvm import relay, transform
from tvm.contrib.download import download_testdata


Expand Down Expand Up @@ -77,7 +77,7 @@ def extract(path):
target = 'llvm'

# Build with Relay
with relay.build_config(opt_level=3):
with transform.PassContext(opt_level=3):
graph, lib, params = relay.build_module.build(
mod, target, params=params)

Expand Down
2 changes: 1 addition & 1 deletion python/tvm/relay/frontend/common.py
Original file line number Diff line number Diff line change
Expand Up @@ -505,7 +505,7 @@ def infer_value(input_val, params, mod=None):
assert all(var.name_hint in params.keys() for var in analysis.free_vars(
input_val)), "All inputs to infer must be available in params."
func = _function.Function(analysis.free_vars(input_val), input_val)
with tvm.relay.build_config(opt_level=0):
with tvm.transform.PassContext(opt_level=0):
graph, lib, params = tvm.relay.build(func, target="llvm", params=params)
ctx = tvm.cpu(0)
m = graph_runtime.create(graph, lib, ctx)
Expand Down
3 changes: 1 addition & 2 deletions python/tvm/relay/quantize/_calibrate.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,7 +28,6 @@
from .. import op as _op
from .. import expr as _expr
from .. import analysis as _analysis
from .. import transform as _transform
from .. import build_module as _build_module
from ...contrib import graph_runtime
from .kl_divergence import _find_scale_by_kl
Expand All @@ -45,7 +44,7 @@ def _get_profile_runtime(mod):
target = 'llvm'
ctx = tvm.context(target)

with _transform.build_config(opt_level=3):
with tvm.transform.PassContext(opt_level=3):
graph, lib, params = _build_module.build(func, target=target)
runtime = graph_runtime.create(graph, lib, ctx)
runtime.set_input(**params)
Expand Down
10 changes: 7 additions & 3 deletions python/tvm/relay/transform/transform.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,6 +21,7 @@
import types
import inspect
import functools
import warnings

import tvm.ir
from tvm import te
Expand All @@ -34,7 +35,9 @@ def build_config(opt_level=2,
required_pass=None,
disabled_pass=None,
trace=None):
"""Configure the build behavior by setting config variables.
"""Configure the build behavior by setting config variables. This function
will be deprecated in TVM v0.7. Instead, we should directly use
tvm.transform.PassContext.
Parameters
----------
Expand Down Expand Up @@ -72,8 +75,9 @@ def build_config(opt_level=2,
pass_context: PassContext
The pass context for optimizations.
"""
return tvm.ir.transform.PassContext(opt_level, required_pass,
disabled_pass, trace)
warnings.warn("relay.build_config will be deprecated. Please use \
tvm.transform.PassContext directly", DeprecationWarning)
return tvm.transform.PassContext(opt_level, required_pass, disabled_pass, trace)


@tvm._ffi.register_object("relay.FunctionPass")
Expand Down
4 changes: 2 additions & 2 deletions rust/frontend/examples/resnet/src/build_resnet.py
Original file line number Diff line number Diff line change
Expand Up @@ -75,8 +75,8 @@ def build(target_dir):
num_layers=18, batch_size=batch_size, image_shape=image_shape)

# compile the model
with relay.build_config(opt_level=opt_level):
graph, lib, params = relay.build_module.build(net, target, params=params)
with tvm.transform.PassContext(opt_level=opt_level):
graph, lib, params = relay.build_module.build(net, target, params=params)

# save the model artifacts
lib.save(deploy_lib)
Expand Down
5 changes: 2 additions & 3 deletions src/relay/backend/build_module.cc
Original file line number Diff line number Diff line change
Expand Up @@ -304,9 +304,8 @@ class RelayBuildModule : public runtime::ModuleNode {
// Handle heterogeneous compilation.
transform::PassContext pass_ctx = PassContext::Current();
if (targets_.size() > 1) {
Optional<IntImm> opt_fallback_dev =
pass_ctx->GetConfig("relay.fallback_device_type",
IntImm(runtime::DataType::Int(32), static_cast<int>(kDLCPU)));
Optional<Integer> opt_fallback_dev =
pass_ctx->GetConfig("relay.fallback_device_type", Integer(static_cast<int>(kDLCPU)));
auto fallback_dev = opt_fallback_dev.value();
CHECK_GT(fallback_dev->value, 0U);
relay_module = RunDeviceAnnotationPass(relay_module, fallback_dev->value);
Expand Down
2 changes: 1 addition & 1 deletion tests/cpp/relay_transform_sequential.cc
Original file line number Diff line number Diff line change
Expand Up @@ -70,7 +70,7 @@ TEST(Relay, Sequential) {
auto mod = IRModule::FromExpr(func);
auto pass_ctx = relay::transform::PassContext::Create();
pass_ctx->opt_level = 3;
pass_ctx->config.Set("relay.fallback_device_type", IntImm(DataType::Int(32), 1));
pass_ctx->config.Set("relay.fallback_device_type", Integer(1));
{
tvm::With<relay::transform::PassContext> ctx_scope(pass_ctx);
tvm::With<tvm::Target> tctx(tvm::Target::Create("llvm"));
Expand Down
2 changes: 1 addition & 1 deletion tests/python/frontend/caffe2/test_forward.py
Original file line number Diff line number Diff line change
Expand Up @@ -43,7 +43,7 @@ def get_tvm_output(model,
dtype_dict = {input_names: input_data.dtype}
mod, params = relay.frontend.from_caffe2(
model.init_net, model.predict_net, shape_dict, dtype_dict)
with relay.build_config(opt_level=3):
with tvm.transform.PassContext(opt_level=3):
graph, lib, params = relay.build(mod, target, params=params)

m = graph_runtime.create(graph, lib, ctx)
Expand Down
4 changes: 2 additions & 2 deletions tests/python/frontend/coreml/test_forward.py
Original file line number Diff line number Diff line change
Expand Up @@ -33,7 +33,7 @@

def get_tvm_output(func, x, params, target, ctx,
out_shape=(1, 1000), input_name='image', dtype='float32'):
with relay.transform.build_config(opt_level=3):
with tvm.transform.PassContext(opt_level=3):
graph, lib, params = relay.build(func, target, params=params)
m = graph_runtime.create(graph, lib, ctx)
# set inputs
Expand Down Expand Up @@ -76,7 +76,7 @@ def run_tvm_graph(coreml_model, target, ctx, input_data, input_name, output_shap
dtype_dict = {input_name: input_data.dtype}

mod, params = relay.frontend.from_coreml(coreml_model, shape_dict)
with relay.transform.build_config(opt_level=3):
with tvm.transform.PassContext(opt_level=3):
graph, lib, params = relay.build(mod, target, params=params)

from tvm.contrib import graph_runtime
Expand Down
2 changes: 1 addition & 1 deletion tests/python/frontend/keras/test_forward.py
Original file line number Diff line number Diff line change
Expand Up @@ -84,7 +84,7 @@ def get_keras_output(xs, dtype='float32'):
def get_tvm_output(xs, target, ctx, dtype='float32'):
shape_dict = {name: x.shape for (name, x) in zip(keras_model.input_names, xs)}
mod, params = relay.frontend.from_keras(keras_model, shape_dict, layout=layout)
with relay.transform.build_config(opt_level=2):
with tvm.transform.PassContext(opt_level=2):
graph, lib, params = relay.build(mod,
target,
params=params)
Expand Down
2 changes: 1 addition & 1 deletion tests/python/frontend/mxnet/test_forward.py
Original file line number Diff line number Diff line change
Expand Up @@ -66,7 +66,7 @@ def get_tvm_output(symbol, x, args, auxs, target, ctx, dtype='float32'):
shape_dict,
arg_params=args,
aux_params=auxs)
with relay.build_config(opt_level=3):
with tvm.transform.PassContext(opt_level=3):
graph, lib, params = relay.build(mod, target, params=params)
m = graph_runtime.create(graph, lib, ctx)
# set inputs
Expand Down
6 changes: 3 additions & 3 deletions tests/python/frontend/mxnet/test_qnn_ops_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,8 +15,8 @@
# specific language governing permissions and limitations
# under the License.

import tvm
import numpy as np
import tvm
from tvm import relay
from tvm.contrib import graph_runtime
from tvm.relay.frontend.mxnet_qnn_op_utils import dequantize_mxnet_min_max, \
Expand All @@ -39,7 +39,7 @@ def dequantize_test_driver(in_dtype, quant_args, in_data, verify_output_data):
in_dtype=in_dtype)
mod = relay.Function(relay.analysis.free_vars(dequantized_output), dequantized_output)
mod = tvm.IRModule.from_expr(mod)
with relay.build_config(opt_level=3):
with tvm.transform.PassContext(opt_level=3):
graph, lib, params = relay.build(mod, "llvm", params=None)
rt_mod = graph_runtime.create(graph, lib, ctx=tvm.cpu(0))
rt_mod.set_input(input_data=in_data)
Expand Down Expand Up @@ -93,7 +93,7 @@ def quantize_test_driver(out_dtype, quant_args, in_data, verify_output_data):
out_dtype=out_dtype)
mod = relay.Function(relay.analysis.free_vars(quantized_output), quantized_output)
mod = tvm.IRModule.from_expr(mod)
with relay.build_config(opt_level=3):
with tvm.transform.PassContext(opt_level=3):
graph, lib, params = relay.build(mod, "llvm", params=None)
rt_mod = graph_runtime.create(graph, lib, ctx=tvm.cpu(0))
rt_mod.set_input(input_data=in_data)
Expand Down
2 changes: 1 addition & 1 deletion tests/python/frontend/onnx/test_forward.py
Original file line number Diff line number Diff line change
Expand Up @@ -65,7 +65,7 @@ def get_tvm_output(graph_def, input_data, target, ctx, output_shape=None, output

mod, params = relay.frontend.from_onnx(graph_def, shape_dict, opset=opset)

with relay.build_config(opt_level=1):
with tvm.transform.PassContext(opt_level=1):
graph, lib, params = relay.build(mod,
target,
params=params)
Expand Down
2 changes: 1 addition & 1 deletion tests/python/frontend/pytorch/qnn_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -41,7 +41,7 @@ def get_tvm_runtime(script_module, input_name, ishape):
input_shapes = [(input_name, ishape)]
mod, params = relay.frontend.from_pytorch(script_module, input_shapes)

with relay.build_config(opt_level=3):
with tvm.transform.PassContext(opt_level=3):
# test on only cpu for now, torch cannot run quant models on cuda
# also not to make CI too slow
json, lib, params = relay.build(mod, target="llvm", params=params)
Expand Down
4 changes: 2 additions & 2 deletions tests/python/frontend/pytorch/test_forward.py
Original file line number Diff line number Diff line change
Expand Up @@ -176,7 +176,7 @@ def verify_model(model_name, input_data=[],
compiled_input = dict(zip(input_names,
[inp.cpu().numpy() for inp in baseline_input]))

with relay.build_config(opt_level=3):
with tvm.transform.PassContext(opt_level=3):
for target, ctx in ctx_list:
relay_graph, relay_lib, relay_params = relay.build(mod, target=target, params=params)
relay_model = graph_runtime.create(relay_graph, relay_lib, ctx)
Expand Down Expand Up @@ -2294,7 +2294,7 @@ def test_forward_pretrained_bert_base_uncased():
# ----------------------------

target = 'llvm'
with relay.build_config(opt_level=3):
with tvm.transform.PassContext(opt_level=3):
relay_graph, relay_lib, relay_params = relay.build(mod, target=target, params=params)

######################################################################
Expand Down
2 changes: 1 addition & 1 deletion tests/python/frontend/tensorflow/test_bn_dynamic.py
Original file line number Diff line number Diff line change
Expand Up @@ -50,7 +50,7 @@ def verify_fused_batch_norm(shape):
continue
mod, params = relay.frontend.from_tensorflow(constant_graph,
outputs=['output'])
with relay.build_config(opt_level=3):
with tvm.transform.PassContext(opt_level=3):
graph, lib, params = relay.build(mod,
target=device,
params=params)
Expand Down
4 changes: 2 additions & 2 deletions tests/python/frontend/tensorflow/test_forward.py
Original file line number Diff line number Diff line change
Expand Up @@ -123,7 +123,7 @@ def run_tvm_graph(graph_def, input_data, input_node, num_output=1,
result = ex.evaluate()(*inputs)
return vmobj_to_list(result)
else:
with relay.build_config(opt_level=opt_level):
with tvm.transform.PassContext(opt_level=opt_level):
graph, lib, params = relay.build(mod, target, target_host, params)

ctx = tvm.context(target, 0)
Expand Down Expand Up @@ -2307,7 +2307,7 @@ def _get_tvm_graph_module(graph_def):
'Model/RNN/RNN/multi_rnn_cell/cell_0/lstm_cell/LSTMBlockCell_c': 'float32',
'Model/RNN/RNN/multi_rnn_cell/cell_0/lstm_cell/LSTMBlockCell_h': 'float32'}
target = 'llvm'
with relay.build_config(opt_level=0):
with tvm.transform.PassContext(opt_level=0):
graph, lib, params = relay.build(mod,
target,
params=params)
Expand Down
2 changes: 1 addition & 1 deletion tests/python/frontend/tflite/test_forward.py
Original file line number Diff line number Diff line change
Expand Up @@ -109,7 +109,7 @@ def run_tvm_graph(tflite_model_buf, input_data, input_node, num_output=1, target
shape_dict=shape_dict,
dtype_dict=dtype_dict)

with relay.build_config(opt_level=3):
with tvm.transform.PassContext(opt_level=3):
graph, lib, params = relay.build(mod, target, params=params)

ctx = tvm.context(target, 0)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -66,7 +66,7 @@ def get_model(model_name, batch_size, qconfig, target=None, original=False, simu
mod, params = relay.frontend.from_mxnet(gluon_model, {"data": data_shape})
net = mod['main']

with relay.build_config(opt_level=3):
with tvm.transform.PassContext(opt_level=3):
qfunc = relay.quantize.prerequisite_optimize(net, params=params)
logging.debug('original')
logging.debug(qfunc.astext(show_meta_data=False))
Expand All @@ -83,7 +83,7 @@ def get_model(model_name, batch_size, qconfig, target=None, original=False, simu


def eval_acc(model, dataset, batch_fn, target=tvm.target.cuda(), ctx=tvm.gpu(), log_interval=100):
with relay.build_config(opt_level=3):
with tvm.transform.PassContext(opt_level=3):
graph, lib, params = relay.build(model, target)
# create runtime module
m = tvm.contrib.graph_runtime.create(graph, lib, ctx)
Expand Down
4 changes: 2 additions & 2 deletions tests/python/relay/benchmarking/benchmark_vm.py
Original file line number Diff line number Diff line change
Expand Up @@ -36,7 +36,7 @@ def benchmark_execution(mod,
model="unknown"):
def get_graph_runtime_output(mod, data, params, target, ctx,
dtype='float32', number=2, repeat=20):
with relay.build_config(opt_level=3):
with tvm.transform.PassContext(opt_level=3):
graph, lib, params = relay.build(mod, target, params=params)

m = graph_runtime.create(graph, lib, ctx)
Expand All @@ -59,7 +59,7 @@ def get_graph_runtime_output(mod, data, params, target, ctx,

def get_vm_output(mod, data, params, target, ctx, dtype='float32',
number=2, repeat=20):
with relay.build_config(opt_level=3):
with tvm.transform.PassContext(opt_level=3):
exe = vm.compile(mod, target, params=params)
rly_vm = vm_rt.VirtualMachine(exe)
rly_vm.init(ctx)
Expand Down
2 changes: 1 addition & 1 deletion tests/python/relay/test_backend_compile_engine.py
Original file line number Diff line number Diff line change
Expand Up @@ -184,7 +184,7 @@ def test_compile_placeholder_bypass():
z = relay.var("z", shape=(2, 3))
result = relay.Tuple([x, relay.op.concatenate([y, z], axis=0)])
func = relay.Function(relay.analysis.free_vars(result), result)
with relay.build_config(opt_level=0):
with tvm.transform.PassContext(opt_level=0):
graph, lib, params = relay.build(tvm.IRModule.from_expr(func), 'llvm')


Expand Down
2 changes: 1 addition & 1 deletion tests/python/relay/test_backend_graph_runtime.py
Original file line number Diff line number Diff line change
Expand Up @@ -166,7 +166,7 @@ def unit_numpy(X, W):
z = unit(rnn_dim)

for target, ctx in ctx_list():
with relay.build_config(opt_level=2):
with tvm.transform.PassContext(opt_level=2):
graph, lib, params = relay.build(tvm.IRModule.from_expr(z), target)
m = graph_runtime.create(graph, lib, ctx)
m.set_input("X", tvm.nd.array(x.astype(dtype)))
Expand Down
2 changes: 1 addition & 1 deletion tests/python/relay/test_cpp_build_module.py
Original file line number Diff line number Diff line change
Expand Up @@ -115,7 +115,7 @@ def check_conversion(tgt, ctx):
X = tvm.nd.array(n * np.random.randn(n).astype(src) - n / 2)

# build
with relay.build_config(opt_level=1):
with tvm.transform.PassContext(opt_level=1):
g_json, mmod, params = relay.build(tvm.IRModule.from_expr(func), tgt)

# test
Expand Down
6 changes: 4 additions & 2 deletions tests/python/relay/test_external_codegen.py
Original file line number Diff line number Diff line change
Expand Up @@ -49,7 +49,8 @@ def update_lib(lib):
return lib

def check_vm_result():
with relay.build_config(opt_level=3, disabled_pass=["AlterOpLayout"]):
with tvm.transform.PassContext(opt_level=3,
disabled_pass=["AlterOpLayout"]):
exe = relay.vm.compile(mod, target=target)
code, lib = exe.save()
lib = update_lib(lib)
Expand All @@ -60,7 +61,8 @@ def check_vm_result():
tvm.testing.assert_allclose(out.asnumpy(), result, rtol=tol, atol=tol)

def check_graph_runtime_result():
with relay.build_config(opt_level=3, disabled_pass=["AlterOpLayout"]):
with tvm.transform.PassContext(opt_level=3,
disabled_pass=["AlterOpLayout"]):
json, lib, _ = relay.build(mod, target=target)
lib = update_lib(lib)
rt_mod = tvm.contrib.graph_runtime.create(json, lib, ctx)
Expand Down
2 changes: 1 addition & 1 deletion tests/python/relay/test_memory_passes.py
Original file line number Diff line number Diff line change
Expand Up @@ -37,7 +37,7 @@ def check_memory_plan(func, check_fn):
no_plan_result = ex.evaluate(mod['main'])(*args)

# Compute with memory planning.
with relay.build_config(opt_level=1, disabled_pass=["MemoryPlan"]):
with tvm.transform.PassContext(opt_level=1, disabled_pass=["MemoryPlan"]):
plan_result = ex.evaluate(mod['main'])(*args)

# Compute Python result.
Expand Down
Loading

0 comments on commit 504e8dd

Please sign in to comment.