-
Notifications
You must be signed in to change notification settings - Fork 3.5k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[TOPI][CUDA] Add faster-rcnn proposal op
- Loading branch information
Showing
8 changed files
with
570 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -18,3 +18,4 @@ | |
from . import ssd | ||
from .ssd import * | ||
from .nms import * | ||
from .rcnn import * |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,3 @@ | ||
# pylint: disable=wildcard-import | ||
"""Faster R-CNN and Mask R-CNN operators""" | ||
from .proposal import * |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,355 @@ | ||
# pylint: disable=invalid-name, singleton-comparison | ||
"""Proposal operator""" | ||
import math | ||
import tvm | ||
from ...vision.rcnn import proposal, generate_anchor, reg_bbox, reg_iou | ||
from ...util import get_const_tuple, get_const_int | ||
|
||
|
||
def predict_bbox_ir(cls_prob_buf, bbox_pred_buf, im_info_buf, out_buf, scales, ratios, | ||
feature_stride, rpn_min_size, iou_loss): | ||
"""Predict bounding boxes based on anchors, scores and deltas. | ||
Parameters | ||
---------- | ||
cls_prob_buf : tvm.schedule.Buffer | ||
4-D with shape [batch, 2 * num_anchors, height, width] | ||
bbox_pred_buf : tvm.schedule.Buffer | ||
4-D with shape [batch, 4 * num_anchors, height, width] | ||
im_info_buf : tvm.schedule.Buffer | ||
2-D with shape [batch, 3] | ||
out_buf : tvm.schedule.Buffer | ||
3-D with shape [batch, num_bbox, 5] | ||
The last dimension is in format of [w_start, h_start, w_end, h_end, score] | ||
scales : list/tuple of float | ||
Scales of anchor windoes. | ||
ratios : list/tuple of float | ||
Ratios of anchor windoes. | ||
feature_stride : int | ||
The size of the receptive field each unit in the convolution layer of the rpn, for example | ||
the product of all stride's prior to this layer. | ||
rpn_min_size : int | ||
Minimum height or width in proposal. | ||
iou_loss : bool | ||
Usage of IoU loss. | ||
Returns | ||
------- | ||
stmt : Stmt | ||
The result IR statement. | ||
""" | ||
batch, num_anchors, height, width = get_const_tuple(cls_prob_buf.shape) | ||
num_anchors //= 2 | ||
max_threads = int(tvm.target.current_target(allow_none=False).max_num_threads) | ||
nthread_tx = max_threads | ||
nthread_bx = (batch * height * width) // max_threads + 1 | ||
tx = tvm.thread_axis("threadIdx.x") | ||
bx = tvm.thread_axis("blockIdx.x") | ||
tid = bx * max_threads + tx | ||
ib = tvm.ir_builder.create() | ||
ib.scope_attr(tx, "thread_extent", nthread_tx) | ||
ib.scope_attr(bx, "thread_extent", nthread_bx) | ||
|
||
p_score = ib.buffer_ptr(cls_prob_buf) | ||
p_delta = ib.buffer_ptr(bbox_pred_buf) | ||
p_im_info = ib.buffer_ptr(im_info_buf) | ||
p_out = ib.buffer_ptr(out_buf) | ||
|
||
with ib.if_scope(tid < batch * height * width): | ||
w = tid % width | ||
h = (tid // width) % height | ||
b = tid // width // height | ||
|
||
for k in range(num_anchors): | ||
out_index = tid * num_anchors + k | ||
ratio = ratios[k // len(scales)] | ||
scale = scales[k % len(scales)] | ||
anchor = generate_anchor(ratio, scale, feature_stride) | ||
im_height = p_im_info[b * 3] | ||
im_width = p_im_info[b * 3 + 1] | ||
x1 = anchor[0] + w * feature_stride | ||
y1 = anchor[1] + h * feature_stride | ||
x2 = anchor[2] + w * feature_stride | ||
y2 = anchor[3] + h * feature_stride | ||
|
||
delta = [p_delta[((((b * num_anchors + k) * 4 + i) * height + h) * width + w)] | ||
for i in range(4)] | ||
regression_func = reg_iou if iou_loss else reg_bbox | ||
pred_x1, pred_y1, pred_x2, pred_y2 = regression_func(x1, y1, x2, y2, *delta) | ||
|
||
pred_x1 = tvm.max(tvm.min(pred_x1, im_width - 1.0), 0.0) | ||
pred_y1 = tvm.max(tvm.min(pred_y1, im_height - 1.0), 0.0) | ||
pred_x2 = tvm.max(tvm.min(pred_x2, im_width - 1.0), 0.0) | ||
pred_y2 = tvm.max(tvm.min(pred_y2, im_height - 1.0), 0.0) | ||
|
||
real_height = (im_height / feature_stride).astype('int32') | ||
real_width = (im_width / feature_stride).astype('int32') | ||
|
||
bbox_w = pred_x2 - pred_x1 + 1.0 | ||
bbox_h = pred_y2 - pred_y1 + 1.0 | ||
min_size = p_im_info[b * 3 + 2] * rpn_min_size | ||
|
||
pred_score = p_score[((b * num_anchors * 2 + num_anchors + k) * height + h) * width + w] | ||
pred_score = tvm.select(tvm.any(h >= real_height, w >= real_width), -1.0, pred_score) | ||
|
||
p_out[out_index * 5 + 0] = pred_x1 | ||
p_out[out_index * 5 + 1] = pred_y1 | ||
p_out[out_index * 5 + 2] = pred_x2 | ||
p_out[out_index * 5 + 3] = pred_y2 | ||
p_out[out_index * 5 + 4] = pred_score | ||
|
||
with ib.if_scope(tvm.any(bbox_w < min_size, bbox_h < min_size)): | ||
p_out[out_index * 5 + 0] -= min_size / 2.0 | ||
p_out[out_index * 5 + 1] -= min_size / 2.0 | ||
p_out[out_index * 5 + 2] += min_size / 2.0 | ||
p_out[out_index * 5 + 3] += min_size / 2.0 | ||
p_out[out_index * 5 + 4] = -1.0 | ||
|
||
return ib.get() | ||
|
||
|
||
def argsort_ir(data_buf, out_index_buf): | ||
"""Batched odd-even transposition sort. | ||
Parameters | ||
---------- | ||
data_buf : tvm.schedule.Buffer | ||
2-D with shape [batch, num_bbox] | ||
out_index_buf : tvm.schedule.Buffer | ||
2-D with shape [batch, num_bbox]. Indices of data in sorted order. | ||
Returns | ||
------- | ||
stmt : Stmt | ||
The result IR statement. | ||
""" | ||
batch, num_bbox = get_const_tuple(data_buf.shape) | ||
max_threads = int(tvm.target.current_target(allow_none=False).max_num_threads) | ||
tx = tvm.thread_axis("threadIdx.x") | ||
bx = tvm.thread_axis("blockIdx.x") | ||
ib = tvm.ir_builder.create() | ||
temp_data = ib.allocate("float32", (1,), name="temp_data", scope="local") | ||
temp_index = ib.allocate("int32", (1,), name="temp_index", scope="local") | ||
p_data = ib.buffer_ptr(data_buf) | ||
index_out = ib.buffer_ptr(out_index_buf) | ||
nthread_tx = max_threads | ||
nthread_bx = num_bbox // max_threads + 1 | ||
ib.scope_attr(tx, "thread_extent", nthread_tx) | ||
ib.scope_attr(bx, "thread_extent", nthread_bx) | ||
tid = bx * nthread_tx + tx | ||
|
||
with ib.for_range(0, batch, for_type="unroll") as b: | ||
start = b * num_bbox | ||
with ib.if_scope(tid < num_bbox): | ||
index_out[start + tid] = tid | ||
|
||
with ib.for_range(0, num_bbox) as k: | ||
with ib.if_scope(tid < (num_bbox + 1) // 2): | ||
offset = start + 2 * tid + (k % 2) | ||
with ib.if_scope( | ||
tvm.all(offset + 1 < num_bbox, p_data[offset] < p_data[offset + 1])): | ||
temp_data[0] = p_data[offset] | ||
p_data[offset] = p_data[offset + 1] | ||
p_data[offset + 1] = temp_data[0] | ||
temp_index[0] = index_out[offset] | ||
index_out[offset] = index_out[offset + 1] | ||
index_out[offset + 1] = temp_index[0] | ||
|
||
return ib.get() | ||
|
||
|
||
def nms_ir(sorted_bbox_buf, out_buf, nms_threshold): | ||
"""Non-maximum supression. | ||
Parameters | ||
---------- | ||
sorted_bbox_buf : tvm.schedule.Buffer | ||
3-D with shape [batch, num_bbox, 5]. The last dimension is in format of | ||
[w_start, h_start, w_end, h_end, score]. | ||
out_buf : tvm.schedule.Buffer | ||
2-D with shape [batch, num_bbox]. Boolean mask of whether a bounding box should be removed. | ||
nms_threshold : float | ||
Non-maximum suppression threshold. | ||
Returns | ||
------- | ||
stmt : Stmt | ||
The result IR statement. | ||
""" | ||
def calculate_overlap(out_tensor, box_a_idx, box_b_idx): | ||
"""Calculate overlap of two boxes. | ||
""" | ||
w = tvm.max(0.0, tvm.min(out_tensor[box_a_idx + 2], out_tensor[box_b_idx + 2]) | ||
- tvm.max(out_tensor[box_a_idx], out_tensor[box_b_idx]) + 1.0) | ||
h = tvm.max(0.0, tvm.min(out_tensor[box_a_idx + 3], out_tensor[box_b_idx + 3]) | ||
- tvm.max(out_tensor[box_a_idx + 1], out_tensor[box_b_idx + 1]) + 1.0) | ||
i = w * h | ||
u = (out_tensor[box_a_idx + 2] - out_tensor[box_a_idx] + 1.0) * \ | ||
(out_tensor[box_a_idx + 3] - out_tensor[box_a_idx + 1] + 1.0) + \ | ||
(out_tensor[box_b_idx + 2] - out_tensor[box_b_idx] + 1.0) * \ | ||
(out_tensor[box_b_idx + 3] - out_tensor[box_b_idx + 1] + 1.0) - i | ||
return i / u | ||
|
||
batch, num_bbox = get_const_tuple(out_buf.shape) | ||
max_threads = int(math.sqrt(tvm.target.current_target(allow_none=False).max_num_threads)) | ||
tx = tvm.thread_axis("threadIdx.x") | ||
bx = tvm.thread_axis("blockIdx.x") | ||
ib = tvm.ir_builder.create() | ||
p_data = ib.buffer_ptr(sorted_bbox_buf) | ||
p_out = ib.buffer_ptr(out_buf) | ||
nthread_tx = max_threads | ||
nthread_bx = num_bbox // max_threads + 1 | ||
ib.scope_attr(tx, "thread_extent", nthread_tx) | ||
ib.scope_attr(bx, "thread_extent", nthread_bx) | ||
j = bx * max_threads + tx | ||
with ib.for_range(0, batch, for_type="unroll", name="n") as b: | ||
start = b * num_bbox | ||
with ib.if_scope(j < num_bbox): | ||
p_out[start + j] = False | ||
|
||
with ib.for_range(0, num_bbox - 1) as i: | ||
with ib.if_scope(tvm.all(j < num_bbox, j > i, p_out[start + i] == False)): | ||
iou = calculate_overlap(p_data, (start + i) * 5, (start + j) * 5) | ||
with ib.if_scope(iou > nms_threshold): | ||
p_out[start + j] = True | ||
return ib.get() | ||
|
||
|
||
def prepare_output_ir(sorted_bbox_buf, remove_mask_buf, out_buf): | ||
"""Copy output after applying nms to continuous memory. | ||
Parameters | ||
---------- | ||
sorted_bbox_buf : tvm.schedule.Buffer | ||
3-D with shape [batch, num_bbox, 5]. The last dimension is in format of | ||
[w_start, h_start, w_end, h_end, score]. | ||
remove_mask_buf : tvm.schedule.Buffer | ||
2-D with shape [batch, num_bbox]. Boolean mask of whether a bounding box should be removed. | ||
out_buf : tvm.schedule.Buffer | ||
2-D with shape [batch * rpn_post_nms_top_n, 5]. The last dimension is in format of | ||
[batch_index, w_start, h_start, w_end, h_end]. | ||
Returns | ||
------- | ||
stmt : Stmt | ||
The result IR statement. | ||
""" | ||
batch, num_bbox, _ = get_const_tuple(sorted_bbox_buf.shape) | ||
rpn_post_nms_top_n = get_const_int(out_buf.shape[0]) // batch | ||
nthread_tx = batch | ||
tx = tvm.thread_axis("threadIdx.x") | ||
ib = tvm.ir_builder.create() | ||
ib.scope_attr(tx, "thread_extent", nthread_tx) | ||
i = ib.allocate('int32', (1,), 'i', scope='local') | ||
i[0] = 0 | ||
p_sorted_bbox = ib.buffer_ptr(sorted_bbox_buf) | ||
p_remove = ib.buffer_ptr(remove_mask_buf) | ||
p_out = ib.buffer_ptr(out_buf) | ||
b = tx | ||
|
||
nkeep = ib.allocate('int32', (1,), 'nkeep', scope='local') | ||
nkeep[0] = 0 # number of bbox after nms | ||
|
||
with ib.for_range(0, num_bbox) as j: | ||
with ib.if_scope(p_remove[b * num_bbox + j] == False): | ||
nkeep[0] += 1 | ||
with ib.if_scope(nkeep[0] > 0): | ||
with ib.for_range(0, tvm.ceil( | ||
tvm.const(rpn_post_nms_top_n, 'float32') / nkeep[0]).astype('int32')): | ||
with ib.for_range(0, num_bbox) as j: | ||
offset_j = (b * num_bbox + j) * 5 | ||
offset_i = (b * rpn_post_nms_top_n + i[0]) * 5 | ||
with ib.if_scope(tvm.all(i[0] < rpn_post_nms_top_n, | ||
p_remove[(b*num_bbox+j)] == False)): | ||
p_out[offset_i] = tvm.expr.Cast('float32', b) | ||
with ib.for_range(0, 4, for_type='unroll') as k: | ||
p_out[offset_i + k + 1] = p_sorted_bbox[offset_j + k] | ||
i[0] = i[0] + 1 | ||
|
||
body = ib.get() | ||
return body | ||
|
||
|
||
@proposal.register("cuda") | ||
def proposal_cuda(cls_prob, bbox_pred, im_info, scales, ratios, feature_stride, threshold, | ||
rpn_pre_nms_top_n, rpn_post_nms_top_n, rpn_min_size, iou_loss): | ||
"""Proposal operator. | ||
Parameters | ||
---------- | ||
cls_prob : tvm.Tensor | ||
4-D with shape [batch, 2 * num_anchors, height, width] | ||
bbox_pred : tvm.Tensor | ||
4-D with shape [batch, 4 * num_anchors, height, width] | ||
im_info : tvm.Tensor | ||
2-D with shape [batch, 3] | ||
scales : list/tuple of float | ||
Scales of anchor windoes. | ||
ratios : list/tuple of float | ||
Ratios of anchor windoes. | ||
feature_stride : int | ||
The size of the receptive field each unit in the convolution layer of the rpn, for example | ||
the product of all stride's prior to this layer. | ||
threshold : float | ||
Non-maximum suppression threshold. | ||
rpn_pre_nms_top_n : int | ||
Number of top scoring boxes to apply NMS. -1 to use all boxes. | ||
rpn_post_nms_top_n : int | ||
Number of top scoring boxes to keep after applying NMS to RPN proposals. | ||
rpn_min_size : int | ||
Minimum height or width in proposal. | ||
iou_loss : bool | ||
Usage of IoU loss. | ||
Returns | ||
------- | ||
out : tvm.Tensor | ||
2-D tensor with shape [batch * rpn_post_nms_top_n, 5]. The last dimension is in format of | ||
[batch_index, w_start, h_start, w_end, h_end]. | ||
""" | ||
|
||
batch, _, height, width = get_const_tuple(cls_prob.shape) | ||
num_anchors = len(scales) * len(ratios) | ||
num_bbox = height * width * num_anchors | ||
rpn_pre_nms_top_n = min(rpn_pre_nms_top_n, num_bbox) if rpn_pre_nms_top_n > 0 else num_bbox | ||
|
||
bbox = tvm.extern((batch, num_bbox, 5), [cls_prob, bbox_pred, im_info], lambda ins, outs: | ||
predict_bbox_ir(ins[0], ins[1], ins[2], outs[0], scales, ratios, | ||
feature_stride, rpn_min_size, iou_loss), | ||
dtype=bbox_pred.dtype) | ||
score = tvm.compute((batch, num_bbox), lambda b, i: bbox[b, i, 4], tag='bbox_score') | ||
sorted_index = tvm.extern([score.shape], [score], | ||
lambda ins, outs: argsort_ir(ins[0], outs[0]), | ||
dtype='int32') | ||
sorted_bbox = tvm.compute((batch, rpn_pre_nms_top_n, 5), | ||
lambda b, i, j: bbox[b, sorted_index[b, i], j], tag='sorted_bbox') | ||
nms_remove_mask = tvm.extern((batch, rpn_pre_nms_top_n), [sorted_bbox], | ||
lambda ins, outs: nms_ir(ins[0], outs[0], threshold), | ||
dtype='bool') | ||
nms_out = tvm.extern((batch * rpn_post_nms_top_n, 5), [sorted_bbox, nms_remove_mask], | ||
lambda ins, outs: prepare_output_ir(ins[0], ins[1], outs[0]), | ||
dtype=sorted_bbox.dtype) | ||
return nms_out |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.