Skip to content

Commit

Permalink
Added tflite frontend support for quantized mean. (#4339)
Browse files Browse the repository at this point in the history
  • Loading branch information
tristan-arm authored and zhiics committed Nov 22, 2019
1 parent 00d47de commit 0f4b32f
Show file tree
Hide file tree
Showing 2 changed files with 41 additions and 2 deletions.
17 changes: 17 additions & 0 deletions python/tvm/relay/frontend/tflite.py
Original file line number Diff line number Diff line change
Expand Up @@ -658,7 +658,24 @@ def _convert_reduce(self, relay_op, op):
reduce_options.Init(op_options.Bytes, op_options.Pos)
keep_dims = reduce_options.KeepDims()

if input_tensor.qnn_params:
in_expr = _op.cast(in_expr, "int32")

out = relay_op(in_expr, axis, keep_dims)

# Finally if the reduce is quantized. Add a requantize at the end.
output_tensors = self.get_output_tensors(op)
assert len(output_tensors) == 1, "output tensors length should be 1"
output_tensor = output_tensors[0]
output_tensor_type_str = self.get_tensor_type_str(output_tensor.tensor.Type())
if output_tensor.qnn_params:
out = _qnn.op.requantize(out,
input_scale=input_tensor.qnn_params['scale'],
input_zero_point=input_tensor.qnn_params['zero_point'],
output_scale=output_tensor.qnn_params['scale'],
output_zero_point=output_tensor.qnn_params['zero_point'],
out_dtype=output_tensor_type_str)

return out

def _convert_reduce_min(self, op):
Expand Down
26 changes: 24 additions & 2 deletions tests/python/frontend/tflite/test_forward.py
Original file line number Diff line number Diff line change
Expand Up @@ -722,6 +722,19 @@ def _test_reduce(math_op, data, keep_dims=None):
out = math_op(in_data, data[1], keep_dims)
compare_tflite_with_tvm([data[0]], ['in:0'], [in_data], [out])

def _test_reduce_quantize(math_op, data, keep_dims=None):
""" One iteration of reduce """

assert len(data) == 2

# Test with tensor and constant
with tf.Graph().as_default():
in_data = [array_ops.placeholder(shape=data[0].shape, dtype="float32", name='in')]
inq_data = [tf.quantization.fake_quant_with_min_max_args(in_data[0], min=-100, max=100, name="inq_0")]
out = math_op(inq_data, data[1], keep_dims)
out = tf.quantization.fake_quant_with_min_max_args(out, min=-200, max=200, name="out")
compare_tflite_with_tvm([data[0]], ['inq_0:0'], [inq_data[0]], [out], quantized=True)


#######################################################################
# Reduce_min
Expand All @@ -743,9 +756,12 @@ def _test_reduce_max(data, keep_dims=None):
# Reduce_mean
# -----------

def _test_reduce_mean(data, keep_dims=None):
def _test_reduce_mean(data, keep_dims=None, quantized=False):
""" One iteration of reduce_mean """
return _test_reduce(math_ops.reduce_mean, data, keep_dims)
if quantized:
return _test_reduce_quantize(math_ops.reduce_mean, data, keep_dims)
else:
return _test_reduce(math_ops.reduce_mean, data, keep_dims)

#######################################################################
# Reduce_prod
Expand Down Expand Up @@ -775,11 +791,17 @@ def _test_forward_reduce(testop):
testop(data1, keep_dims=False)
testop(data1, keep_dims=True)

def _test_forward_reduce_quantized(testop):
data0 = [np.array(np.random.uniform(0, 255, (3, 6)), dtype=np.uint8), np.array([1, 2], dtype=np.int32)]
testop(data0, quantized=True)
testop(data0, keep_dims=False, quantized=True)
testop(data0, keep_dims=True, quantized=True)

def test_all_reduce():
_test_forward_reduce(_test_reduce_min)
_test_forward_reduce(_test_reduce_max)
_test_forward_reduce(_test_reduce_mean)
_test_forward_reduce_quantized(_test_reduce_mean)
_test_forward_reduce(_test_reduce_prod)
_test_forward_reduce(_test_reduce_sum)

Expand Down

0 comments on commit 0f4b32f

Please sign in to comment.