-
Notifications
You must be signed in to change notification settings - Fork 3.5k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
220 additions
and
11 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,111 @@ | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. | ||
# pylint: disable=import-self, invalid-name, unused-argument, too-many-lines, len-as-condition | ||
|
||
import tvm | ||
import numpy as np | ||
from topi.x86.tensor_intrin import dot_16x1x16_int8_int8_int32_vnni | ||
from topi.x86.tensor_intrin import dot_16x1x16_int8_int8_int32 | ||
from nose.tools import nottest | ||
|
||
|
||
@nottest | ||
def test_fc_int8_acc32(): | ||
n = 1024 | ||
k = 1024 | ||
m = 1024 | ||
|
||
X = tvm.placeholder((m, k), name='X', dtype="uint8") | ||
W = tvm.placeholder((n, k), name='W', dtype="int8") | ||
|
||
peak = 280 | ||
print("Peak {} Gops/s".format(peak)) | ||
memory_ops = n * k + m * k + 2 * n * n | ||
gops_per_mm = 2 * n * m * k | ||
|
||
# def verify(target="llvm -mcpu=skylake-avx512"): | ||
# For LLVM < 8.0, it shows "'cascadelake' is not a recognized processor for this target | ||
# (ignoring processor)" error with the following setting. After LLVM 8.0 is enabled in the | ||
# test, we should use cascadelake setting. | ||
def verify(target="llvm -mcpu=cascadelake"): | ||
if not tvm.module.enabled(target): | ||
print("skip because %s is not enabled..." % target) | ||
return | ||
|
||
ctx = tvm.context(target, 0) | ||
pc = dot_16x1x16_int8_int8_int32_vnni() | ||
# pc = dot_16x1x16_int8_int8_int32() | ||
ak = tvm.reduce_axis((0, k), name='k') | ||
packedW = tvm.placeholder( | ||
(n // 16, 16 * (k // 4), 4), name='packedW', dtype="int8") | ||
|
||
t_fc = tvm.compute((m, n), lambda i, j: tvm.sum(X[i, ak].astype( | ||
"int32") * packedW[j / 16, (ak / 4) * 16 + j % 16, ak % 4].astype("int32"), axis=ak), name="F") | ||
t_sch = tvm.create_schedule(t_fc.op) | ||
a_x, a_y = t_fc.op.axis | ||
a_k, = t_fc.op.reduce_axis | ||
|
||
a_yo, a_yi = t_sch[t_fc].split(a_y, factor=16) | ||
a_xo, a_xi = t_sch[t_fc].split(a_x, factor=32) | ||
a_ko, a_ki = t_sch[t_fc].split(a_k, factor=4) | ||
a_koo, a_koi = t_sch[t_fc].split(a_ko, factor=4) | ||
t_sch[t_fc].reorder(a_yo, a_xo, a_xi, a_koo, a_koi, a_yi, a_ki) | ||
|
||
# measure multiple threading | ||
# t_sch[t_fc].parallel(a_xo) | ||
t_sch[t_fc].unroll(a_koi) | ||
t_sch[t_fc].tensorize(a_yi, pc) | ||
|
||
# print(tvm.lower(t_sch, [X, packedW, t_fc], simple_mode=True)) | ||
t_func = tvm.build(t_sch, [X, packedW, t_fc], target, name="intrinsic") | ||
t_evaluator = t_func.time_evaluator(t_func.entry_name, ctx, number=10) | ||
|
||
# generate the plain data | ||
a_ = np.random.uniform(1, 10, size=(m, k)).astype("uint8") | ||
b_ = np.random.uniform(1, 10, size=(n, k)).astype("int8") | ||
|
||
packW = np.random.uniform(1, 10, size=( | ||
n // 16, 16 * (k // 4), 4)).astype("int8") | ||
# This occurs in pre_compute stage | ||
for r_idx in range(n // 16): | ||
for s_idx in range(16 * (k // 4)): | ||
for t_idx in range(4): | ||
packW[r_idx][s_idx][t_idx] = b_[r_idx * 16 + s_idx % | ||
16][(s_idx // 16) * 4 + t_idx] | ||
|
||
x = tvm.nd.array(a_, ctx) | ||
w = tvm.nd.array(packW, ctx) | ||
y = tvm.nd.array(np.zeros((m, n), dtype="int32"), ctx) | ||
result = t_evaluator(x, w, y) | ||
|
||
gops_per_sec = gops_per_mm / result.mean / 1e9 | ||
# verify the correctness | ||
tvm.testing.assert_allclose(y.asnumpy(), np.dot(a_, b_.T), rtol=0) | ||
print('Tensorization: running time: {:.3f} ms, {:.2f} Gops/s, effiency: {:.2f}'.format( | ||
result.mean * 1000, gops_per_sec, gops_per_sec / peak)) | ||
# print('TVM with x86 micro-kernel: %f' % result.mean) | ||
t_func.export_library("tensorize_acc32.o") | ||
|
||
verify() | ||
|
||
|
||
if __name__ == "__main__": | ||
# The test requires Cascade Lake and newer Intel machines to generate the | ||
# correct AVX512 VNNI instruction. So, disabling the test. | ||
|
||
# test_fc_int8_acc32() | ||
pass |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters