-
Notifications
You must be signed in to change notification settings - Fork 28.5k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[SPARK-1368][SQL] Optimized HiveTableScan #758
Conversation
Merged build triggered. |
Merged build started. |
|
||
case _ => | ||
buffered.map { | ||
(_, Array.empty[String]) |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I think this is allocating a new array every time.
Merged build finished. |
Refer to this link for build results: https://amplab.cs.berkeley.edu/jenkins/job/SparkPullRequestBuilder/14941/ |
} | ||
} | ||
|
||
rowsAndPartitionKeys.map { case (deserializedRow, partitionKeys) => |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I'm curious if there is a cost to pattern matching here instead of using _1
and _2
?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Yes there is a Product2[A, B].unapply
function call cost. Removing this gains 0.3% speed up.
Nice speed up! :) I looked at the test failure. Looks like this TODO is finally coming back to bite us. Instead of looking for any Sort we should walk the tree until we find either a Sort or an operation that doesn't preserve ordering (join , aggregate, etc). Once we fix that I'd propose merging this right away and then addressing the other possible suggestions in a followup PR. |
Merged build triggered. |
Merged build started. |
Merged build finished. All automated tests passed. |
All automated tests passed. |
@marmbrus I worked around the test failure by adding a Two new optimizations applied:
New micro benchmark data:
As for Hive data unwrapping, I couldn't find a "static" method to eliminate right now. Any hints? |
I think false negatives are the wrong direction to go here. A false negative means that we think the query is not ordered when it should be and thus are disregarding the order when we should in fact be checking it. Maybe it would be better to recursively walk the tree looking explicitly for nodes that do not preserve order (aggregation, join, base relations) and then return false. Sorts would return true. Thoughts?
Sweet, looks like we shaved off a little bit more, so these optimizations were worth it! It would be good to make notes on which changes lead to what kind of speed up here. That way, we can better focus our efforts when we optimize in the future.
My thought was that you will create an |
Merged build triggered. |
Merged build started. |
Merged build finished. All automated tests passed. |
All automated tests passed. |
@marmbrus Updated |
…tions and avoid some sorting cost in HiveComparisonTest.
- Using mutable pairs - Avoiding pattern matching (Array.unapply function calls)
…ly in HiveComparisonTest
Merged build triggered. |
Merged build started. |
Merged build finished. All automated tests passed. |
All automated tests passed. |
JIRA issue: [SPARK-1368](https://issues.apache.org/jira/browse/SPARK-1368) This PR introduces two major updates: - Replaced FP style code with `while` loop and reusable `GenericMutableRow` object in critical path of `HiveTableScan`. - Using `ColumnProjectionUtils` to help optimizing RCFile and ORC column pruning. My quick micro benchmark suggests these two optimizations made the optimized version 2x and 2.5x faster when scanning CSV table and RCFile table respectively: ``` Original: [info] CSV: 27676 ms, RCFile: 26415 ms [info] CSV: 27703 ms, RCFile: 26029 ms [info] CSV: 27511 ms, RCFile: 25962 ms Optimized: [info] CSV: 13820 ms, RCFile: 10402 ms [info] CSV: 14158 ms, RCFile: 10691 ms [info] CSV: 13606 ms, RCFile: 10346 ms ``` The micro benchmark loads a 609MB CVS file (structurally similar to the `src` test table) into a normal Hive table with `LazySimpleSerDe` and a RCFile table, then scans these tables respectively. Preparation code: ```scala package org.apache.spark.examples.sql.hive import org.apache.spark.sql.hive.LocalHiveContext import org.apache.spark.{SparkConf, SparkContext} object HiveTableScanPrepare extends App { val sparkContext = new SparkContext( new SparkConf() .setMaster("local") .setAppName(getClass.getSimpleName.stripSuffix("$"))) val hiveContext = new LocalHiveContext(sparkContext) import hiveContext._ hql("drop table scan_csv") hql("drop table scan_rcfile") hql("""create table scan_csv (key int, value string) | row format serde 'org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe' | with serdeproperties ('field.delim'=',') """.stripMargin) hql(s"""load data local inpath "${args(0)}" into table scan_csv""") hql("""create table scan_rcfile (key int, value string) | row format serde 'org.apache.hadoop.hive.serde2.columnar.ColumnarSerDe' |stored as | inputformat 'org.apache.hadoop.hive.ql.io.RCFileInputFormat' | outputformat 'org.apache.hadoop.hive.ql.io.RCFileOutputFormat' """.stripMargin) hql( """ |from scan_csv |insert overwrite table scan_rcfile |select scan_csv.key, scan_csv.value """.stripMargin) } ``` Benchmark code: ```scala package org.apache.spark.examples.sql.hive import org.apache.spark.sql.hive.LocalHiveContext import org.apache.spark.{SparkConf, SparkContext} object HiveTableScanBenchmark extends App { val sparkContext = new SparkContext( new SparkConf() .setMaster("local") .setAppName(getClass.getSimpleName.stripSuffix("$"))) val hiveContext = new LocalHiveContext(sparkContext) import hiveContext._ val scanCsv = hql("select key from scan_csv") val scanRcfile = hql("select key from scan_rcfile") val csvDuration = benchmark(scanCsv.count()) val rcfileDuration = benchmark(scanRcfile.count()) println(s"CSV: $csvDuration ms, RCFile: $rcfileDuration ms") def benchmark(f: => Unit) = { val begin = System.currentTimeMillis() f val end = System.currentTimeMillis() end - begin } } ``` @marmbrus Please help review, thanks! Author: Cheng Lian <[email protected]> Closes #758 from liancheng/fastHiveTableScan and squashes the following commits: 4241a19 [Cheng Lian] Distinguishes sorted and possibly not sorted operations more accurately in HiveComparisonTest cf640d8 [Cheng Lian] More HiveTableScan optimisations: bf0e7dc [Cheng Lian] Added SortedOperation pattern to match *some* definitely sorted operations and avoid some sorting cost in HiveComparisonTest. 6d1c642 [Cheng Lian] Using ColumnProjectionUtils to optimise RCFile and ORC column pruning eb62fd3 [Cheng Lian] [SPARK-1368] Optimized HiveTableScan (cherry picked from commit 8f7141f) Signed-off-by: Michael Armbrust <[email protected]>
First merge as a committer :) Thanks for doing this! |
This is a follow up of PR #758. The `unwrapHiveData` function is now composed statically before actual rows are scanned according to the field object inspector to avoid dynamic dispatching cost. According to the same micro benchmark used in PR #758, this simple change brings slight performance boost: 2.5% for CSV table and 1% for RCFile table. ``` Optimized version: CSV: 6870 ms, RCFile: 5687 ms CSV: 6832 ms, RCFile: 5800 ms CSV: 6822 ms, RCFile: 5679 ms CSV: 6704 ms, RCFile: 5758 ms CSV: 6819 ms, RCFile: 5725 ms Original version: CSV: 7042 ms, RCFile: 5667 ms CSV: 6883 ms, RCFile: 5703 ms CSV: 7115 ms, RCFile: 5665 ms CSV: 7020 ms, RCFile: 5981 ms CSV: 6871 ms, RCFile: 5906 ms ``` Author: Cheng Lian <[email protected]> Closes #935 from liancheng/staticUnwrapping and squashes the following commits: c49c70c [Cheng Lian] Avoid dynamic dispatching when unwrapping Hive data.
This is a follow up of PR #758. The `unwrapHiveData` function is now composed statically before actual rows are scanned according to the field object inspector to avoid dynamic dispatching cost. According to the same micro benchmark used in PR #758, this simple change brings slight performance boost: 2.5% for CSV table and 1% for RCFile table. ``` Optimized version: CSV: 6870 ms, RCFile: 5687 ms CSV: 6832 ms, RCFile: 5800 ms CSV: 6822 ms, RCFile: 5679 ms CSV: 6704 ms, RCFile: 5758 ms CSV: 6819 ms, RCFile: 5725 ms Original version: CSV: 7042 ms, RCFile: 5667 ms CSV: 6883 ms, RCFile: 5703 ms CSV: 7115 ms, RCFile: 5665 ms CSV: 7020 ms, RCFile: 5981 ms CSV: 6871 ms, RCFile: 5906 ms ``` Author: Cheng Lian <[email protected]> Closes #935 from liancheng/staticUnwrapping and squashes the following commits: c49c70c [Cheng Lian] Avoid dynamic dispatching when unwrapping Hive data. (cherry picked from commit 862283e) Signed-off-by: Michael Armbrust <[email protected]>
JIRA issue: [SPARK-1368](https://issues.apache.org/jira/browse/SPARK-1368) This PR introduces two major updates: - Replaced FP style code with `while` loop and reusable `GenericMutableRow` object in critical path of `HiveTableScan`. - Using `ColumnProjectionUtils` to help optimizing RCFile and ORC column pruning. My quick micro benchmark suggests these two optimizations made the optimized version 2x and 2.5x faster when scanning CSV table and RCFile table respectively: ``` Original: [info] CSV: 27676 ms, RCFile: 26415 ms [info] CSV: 27703 ms, RCFile: 26029 ms [info] CSV: 27511 ms, RCFile: 25962 ms Optimized: [info] CSV: 13820 ms, RCFile: 10402 ms [info] CSV: 14158 ms, RCFile: 10691 ms [info] CSV: 13606 ms, RCFile: 10346 ms ``` The micro benchmark loads a 609MB CVS file (structurally similar to the `src` test table) into a normal Hive table with `LazySimpleSerDe` and a RCFile table, then scans these tables respectively. Preparation code: ```scala package org.apache.spark.examples.sql.hive import org.apache.spark.sql.hive.LocalHiveContext import org.apache.spark.{SparkConf, SparkContext} object HiveTableScanPrepare extends App { val sparkContext = new SparkContext( new SparkConf() .setMaster("local") .setAppName(getClass.getSimpleName.stripSuffix("$"))) val hiveContext = new LocalHiveContext(sparkContext) import hiveContext._ hql("drop table scan_csv") hql("drop table scan_rcfile") hql("""create table scan_csv (key int, value string) | row format serde 'org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe' | with serdeproperties ('field.delim'=',') """.stripMargin) hql(s"""load data local inpath "${args(0)}" into table scan_csv""") hql("""create table scan_rcfile (key int, value string) | row format serde 'org.apache.hadoop.hive.serde2.columnar.ColumnarSerDe' |stored as | inputformat 'org.apache.hadoop.hive.ql.io.RCFileInputFormat' | outputformat 'org.apache.hadoop.hive.ql.io.RCFileOutputFormat' """.stripMargin) hql( """ |from scan_csv |insert overwrite table scan_rcfile |select scan_csv.key, scan_csv.value """.stripMargin) } ``` Benchmark code: ```scala package org.apache.spark.examples.sql.hive import org.apache.spark.sql.hive.LocalHiveContext import org.apache.spark.{SparkConf, SparkContext} object HiveTableScanBenchmark extends App { val sparkContext = new SparkContext( new SparkConf() .setMaster("local") .setAppName(getClass.getSimpleName.stripSuffix("$"))) val hiveContext = new LocalHiveContext(sparkContext) import hiveContext._ val scanCsv = hql("select key from scan_csv") val scanRcfile = hql("select key from scan_rcfile") val csvDuration = benchmark(scanCsv.count()) val rcfileDuration = benchmark(scanRcfile.count()) println(s"CSV: $csvDuration ms, RCFile: $rcfileDuration ms") def benchmark(f: => Unit) = { val begin = System.currentTimeMillis() f val end = System.currentTimeMillis() end - begin } } ``` @marmbrus Please help review, thanks! Author: Cheng Lian <[email protected]> Closes apache#758 from liancheng/fastHiveTableScan and squashes the following commits: 4241a19 [Cheng Lian] Distinguishes sorted and possibly not sorted operations more accurately in HiveComparisonTest cf640d8 [Cheng Lian] More HiveTableScan optimisations: bf0e7dc [Cheng Lian] Added SortedOperation pattern to match *some* definitely sorted operations and avoid some sorting cost in HiveComparisonTest. 6d1c642 [Cheng Lian] Using ColumnProjectionUtils to optimise RCFile and ORC column pruning eb62fd3 [Cheng Lian] [SPARK-1368] Optimized HiveTableScan
This is a follow up of PR apache#758. The `unwrapHiveData` function is now composed statically before actual rows are scanned according to the field object inspector to avoid dynamic dispatching cost. According to the same micro benchmark used in PR apache#758, this simple change brings slight performance boost: 2.5% for CSV table and 1% for RCFile table. ``` Optimized version: CSV: 6870 ms, RCFile: 5687 ms CSV: 6832 ms, RCFile: 5800 ms CSV: 6822 ms, RCFile: 5679 ms CSV: 6704 ms, RCFile: 5758 ms CSV: 6819 ms, RCFile: 5725 ms Original version: CSV: 7042 ms, RCFile: 5667 ms CSV: 6883 ms, RCFile: 5703 ms CSV: 7115 ms, RCFile: 5665 ms CSV: 7020 ms, RCFile: 5981 ms CSV: 6871 ms, RCFile: 5906 ms ``` Author: Cheng Lian <[email protected]> Closes apache#935 from liancheng/staticUnwrapping and squashes the following commits: c49c70c [Cheng Lian] Avoid dynamic dispatching when unwrapping Hive data.
JIRA issue: [SPARK-1368](https://issues.apache.org/jira/browse/SPARK-1368) This PR introduces two major updates: - Replaced FP style code with `while` loop and reusable `GenericMutableRow` object in critical path of `HiveTableScan`. - Using `ColumnProjectionUtils` to help optimizing RCFile and ORC column pruning. My quick micro benchmark suggests these two optimizations made the optimized version 2x and 2.5x faster when scanning CSV table and RCFile table respectively: ``` Original: [info] CSV: 27676 ms, RCFile: 26415 ms [info] CSV: 27703 ms, RCFile: 26029 ms [info] CSV: 27511 ms, RCFile: 25962 ms Optimized: [info] CSV: 13820 ms, RCFile: 10402 ms [info] CSV: 14158 ms, RCFile: 10691 ms [info] CSV: 13606 ms, RCFile: 10346 ms ``` The micro benchmark loads a 609MB CVS file (structurally similar to the `src` test table) into a normal Hive table with `LazySimpleSerDe` and a RCFile table, then scans these tables respectively. Preparation code: ```scala package org.apache.spark.examples.sql.hive import org.apache.spark.sql.hive.LocalHiveContext import org.apache.spark.{SparkConf, SparkContext} object HiveTableScanPrepare extends App { val sparkContext = new SparkContext( new SparkConf() .setMaster("local") .setAppName(getClass.getSimpleName.stripSuffix("$"))) val hiveContext = new LocalHiveContext(sparkContext) import hiveContext._ hql("drop table scan_csv") hql("drop table scan_rcfile") hql("""create table scan_csv (key int, value string) | row format serde 'org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe' | with serdeproperties ('field.delim'=',') """.stripMargin) hql(s"""load data local inpath "${args(0)}" into table scan_csv""") hql("""create table scan_rcfile (key int, value string) | row format serde 'org.apache.hadoop.hive.serde2.columnar.ColumnarSerDe' |stored as | inputformat 'org.apache.hadoop.hive.ql.io.RCFileInputFormat' | outputformat 'org.apache.hadoop.hive.ql.io.RCFileOutputFormat' """.stripMargin) hql( """ |from scan_csv |insert overwrite table scan_rcfile |select scan_csv.key, scan_csv.value """.stripMargin) } ``` Benchmark code: ```scala package org.apache.spark.examples.sql.hive import org.apache.spark.sql.hive.LocalHiveContext import org.apache.spark.{SparkConf, SparkContext} object HiveTableScanBenchmark extends App { val sparkContext = new SparkContext( new SparkConf() .setMaster("local") .setAppName(getClass.getSimpleName.stripSuffix("$"))) val hiveContext = new LocalHiveContext(sparkContext) import hiveContext._ val scanCsv = hql("select key from scan_csv") val scanRcfile = hql("select key from scan_rcfile") val csvDuration = benchmark(scanCsv.count()) val rcfileDuration = benchmark(scanRcfile.count()) println(s"CSV: $csvDuration ms, RCFile: $rcfileDuration ms") def benchmark(f: => Unit) = { val begin = System.currentTimeMillis() f val end = System.currentTimeMillis() end - begin } } ``` @marmbrus Please help review, thanks! Author: Cheng Lian <[email protected]> Closes apache#758 from liancheng/fastHiveTableScan and squashes the following commits: 4241a19 [Cheng Lian] Distinguishes sorted and possibly not sorted operations more accurately in HiveComparisonTest cf640d8 [Cheng Lian] More HiveTableScan optimisations: bf0e7dc [Cheng Lian] Added SortedOperation pattern to match *some* definitely sorted operations and avoid some sorting cost in HiveComparisonTest. 6d1c642 [Cheng Lian] Using ColumnProjectionUtils to optimise RCFile and ORC column pruning eb62fd3 [Cheng Lian] [SPARK-1368] Optimized HiveTableScan
This is a follow up of PR apache#758. The `unwrapHiveData` function is now composed statically before actual rows are scanned according to the field object inspector to avoid dynamic dispatching cost. According to the same micro benchmark used in PR apache#758, this simple change brings slight performance boost: 2.5% for CSV table and 1% for RCFile table. ``` Optimized version: CSV: 6870 ms, RCFile: 5687 ms CSV: 6832 ms, RCFile: 5800 ms CSV: 6822 ms, RCFile: 5679 ms CSV: 6704 ms, RCFile: 5758 ms CSV: 6819 ms, RCFile: 5725 ms Original version: CSV: 7042 ms, RCFile: 5667 ms CSV: 6883 ms, RCFile: 5703 ms CSV: 7115 ms, RCFile: 5665 ms CSV: 7020 ms, RCFile: 5981 ms CSV: 6871 ms, RCFile: 5906 ms ``` Author: Cheng Lian <[email protected]> Closes apache#935 from liancheng/staticUnwrapping and squashes the following commits: c49c70c [Cheng Lian] Avoid dynamic dispatching when unwrapping Hive data.
JIRA issue: SPARK-1368
This PR introduces two major updates:
while
loop and reusableGenericMutableRow
object in critical path ofHiveTableScan
.ColumnProjectionUtils
to help optimizing RCFile and ORC column pruning.My quick micro benchmark suggests these two optimizations made the optimized version 2x and 2.5x faster when scanning CSV table and RCFile table respectively:
The micro benchmark loads a 609MB CVS file (structurally similar to the
src
test table) into a normal Hive table withLazySimpleSerDe
and a RCFile table, then scans these tables respectively.Preparation code:
Benchmark code:
@marmbrus Please help review, thanks!