Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[SPARK-1368][SQL] Optimized HiveTableScan #758

Closed
wants to merge 5 commits into from

Conversation

liancheng
Copy link
Contributor

JIRA issue: SPARK-1368

This PR introduces two major updates:

  • Replaced FP style code with while loop and reusable GenericMutableRow object in critical path of HiveTableScan.
  • Using ColumnProjectionUtils to help optimizing RCFile and ORC column pruning.

My quick micro benchmark suggests these two optimizations made the optimized version 2x and 2.5x faster when scanning CSV table and RCFile table respectively:

Original:

[info] CSV: 27676 ms, RCFile: 26415 ms
[info] CSV: 27703 ms, RCFile: 26029 ms
[info] CSV: 27511 ms, RCFile: 25962 ms

Optimized:

[info] CSV: 13820 ms, RCFile: 10402 ms
[info] CSV: 14158 ms, RCFile: 10691 ms
[info] CSV: 13606 ms, RCFile: 10346 ms

The micro benchmark loads a 609MB CVS file (structurally similar to the src test table) into a normal Hive table with LazySimpleSerDe and a RCFile table, then scans these tables respectively.

Preparation code:

package org.apache.spark.examples.sql.hive

import org.apache.spark.sql.hive.LocalHiveContext
import org.apache.spark.{SparkConf, SparkContext}

object HiveTableScanPrepare extends App {
  val sparkContext = new SparkContext(
    new SparkConf()
      .setMaster("local")
      .setAppName(getClass.getSimpleName.stripSuffix("$")))

  val hiveContext = new LocalHiveContext(sparkContext)

  import hiveContext._

  hql("drop table scan_csv")
  hql("drop table scan_rcfile")

  hql("""create table scan_csv (key int, value string)
        |  row format serde 'org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe'
        |  with serdeproperties ('field.delim'=',')
      """.stripMargin)

  hql(s"""load data local inpath "${args(0)}" into table scan_csv""")

  hql("""create table scan_rcfile (key int, value string)
        |  row format serde 'org.apache.hadoop.hive.serde2.columnar.ColumnarSerDe'
        |stored as
        |  inputformat 'org.apache.hadoop.hive.ql.io.RCFileInputFormat'
        |  outputformat 'org.apache.hadoop.hive.ql.io.RCFileOutputFormat'
      """.stripMargin)

  hql(
    """
      |from scan_csv
      |insert overwrite table scan_rcfile
      |select scan_csv.key, scan_csv.value
    """.stripMargin)
}

Benchmark code:

package org.apache.spark.examples.sql.hive

import org.apache.spark.sql.hive.LocalHiveContext
import org.apache.spark.{SparkConf, SparkContext}

object HiveTableScanBenchmark extends App {
  val sparkContext = new SparkContext(
    new SparkConf()
      .setMaster("local")
      .setAppName(getClass.getSimpleName.stripSuffix("$")))

  val hiveContext = new LocalHiveContext(sparkContext)

  import hiveContext._

  val scanCsv = hql("select key from scan_csv")
  val scanRcfile = hql("select key from scan_rcfile")

  val csvDuration = benchmark(scanCsv.count())
  val rcfileDuration = benchmark(scanRcfile.count())

  println(s"CSV: $csvDuration ms, RCFile: $rcfileDuration ms")

  def benchmark(f: => Unit) = {
    val begin = System.currentTimeMillis()
    f
    val end = System.currentTimeMillis()
    end - begin
  }
}

@marmbrus Please help review, thanks!

@AmplabJenkins
Copy link

Merged build triggered.

@AmplabJenkins
Copy link

Merged build started.


case _ =>
buffered.map {
(_, Array.empty[String])
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I think this is allocating a new array every time.

@AmplabJenkins
Copy link

Merged build finished.

@AmplabJenkins
Copy link

Refer to this link for build results: https://amplab.cs.berkeley.edu/jenkins/job/SparkPullRequestBuilder/14941/

}
}

rowsAndPartitionKeys.map { case (deserializedRow, partitionKeys) =>
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I'm curious if there is a cost to pattern matching here instead of using _1 and _2?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Yes there is a Product2[A, B].unapply function call cost. Removing this gains 0.3% speed up.

@marmbrus
Copy link
Contributor

Nice speed up! :)

I looked at the test failure. Looks like this TODO is finally coming back to bite us. Instead of looking for any Sort we should walk the tree until we find either a Sort or an operation that doesn't preserve ordering (join , aggregate, etc).

Once we fix that I'd propose merging this right away and then addressing the other possible suggestions in a followup PR.

@AmplabJenkins
Copy link

Merged build triggered.

@AmplabJenkins
Copy link

Merged build started.

@AmplabJenkins
Copy link

Merged build finished. All automated tests passed.

@AmplabJenkins
Copy link

All automated tests passed.
Refer to this link for build results: https://amplab.cs.berkeley.edu/jenkins/job/SparkPullRequestBuilder/15017/

@liancheng
Copy link
Contributor Author

@marmbrus I worked around the test failure by adding a SortedOperation pattern that conservatively matches some definitely sorted operations (false negative rather than false positive). This may slow down the test suite a bit. Since most test output are empty or very small, this shouldn't be an issue right now.

Two new optimizations applied:

  • Using mutable pairs
  • Avoiding pattern matching function calls (Array.unapplySeq)

New micro benchmark data:

Original:

[info] CSV: 27676 ms, RCFile: 26415 ms
[info] CSV: 27703 ms, RCFile: 26029 ms
[info] CSV: 27511 ms, RCFile: 25962 ms

Optimized:

[info] CSV: 12357 ms, RCFile: 9283 ms
[info] CSV: 12291 ms, RCFile: 9298 ms
[info] CSV: 12325 ms, RCFile: 9242 ms

As for Hive data unwrapping, I couldn't find a "static" method to eliminate right now. Any hints?

@marmbrus
Copy link
Contributor

@marmbrus I worked around the test failure by adding a SortedOperation pattern that conservatively matches some definitely sorted operations (false negative rather than false positive). This may slow down the test suite a bit. Since most test output are empty or very small, this shouldn't be an issue right now.

I think false negatives are the wrong direction to go here. A false negative means that we think the query is not ordered when it should be and thus are disregarding the order when we should in fact be checking it.

Maybe it would be better to recursively walk the tree looking explicitly for nodes that do not preserve order (aggregation, join, base relations) and then return false. Sorts would return true. Thoughts?

New micro benchmark data:

Sweet, looks like we shaved off a little bit more, so these optimizations were worth it! It would be good to make notes on which changes lead to what kind of speed up here. That way, we can better focus our efforts when we optimize in the future.

As for Hive data unwrapping, I couldn't find a "static" method to eliminate right now. Any hints?

My thought was that you will create an Array of Any => Any functions that can be applied to each column. This way you only match on the datatype once, at the beginning, and then simply index into this array instead of matching for each data item.

@AmplabJenkins
Copy link

Merged build triggered.

@AmplabJenkins
Copy link

Merged build started.

@AmplabJenkins
Copy link

Merged build finished. All automated tests passed.

@AmplabJenkins
Copy link

All automated tests passed.
Refer to this link for build results: https://amplab.cs.berkeley.edu/jenkins/job/SparkPullRequestBuilder/15069/

@liancheng
Copy link
Contributor Author

@marmbrus Updated HiveComparisonTest and removed SortedOperation, how about this version?

@AmplabJenkins
Copy link

Merged build triggered.

@AmplabJenkins
Copy link

Merged build started.

@AmplabJenkins
Copy link

Merged build finished. All automated tests passed.

@AmplabJenkins
Copy link

All automated tests passed.
Refer to this link for build results: https://amplab.cs.berkeley.edu/jenkins/job/SparkPullRequestBuilder/15251/

@asfgit asfgit closed this in 8f7141f May 29, 2014
asfgit pushed a commit that referenced this pull request May 29, 2014
JIRA issue: [SPARK-1368](https://issues.apache.org/jira/browse/SPARK-1368)

This PR introduces two major updates:

- Replaced FP style code with `while` loop and reusable `GenericMutableRow` object in critical path of `HiveTableScan`.
- Using `ColumnProjectionUtils` to help optimizing RCFile and ORC column pruning.

My quick micro benchmark suggests these two optimizations made the optimized version 2x and 2.5x faster when scanning CSV table and RCFile table respectively:

```
Original:

[info] CSV: 27676 ms, RCFile: 26415 ms
[info] CSV: 27703 ms, RCFile: 26029 ms
[info] CSV: 27511 ms, RCFile: 25962 ms

Optimized:

[info] CSV: 13820 ms, RCFile: 10402 ms
[info] CSV: 14158 ms, RCFile: 10691 ms
[info] CSV: 13606 ms, RCFile: 10346 ms
```

The micro benchmark loads a 609MB CVS file (structurally similar to the `src` test table) into a normal Hive table with `LazySimpleSerDe` and a RCFile table, then scans these tables respectively.

Preparation code:

```scala
package org.apache.spark.examples.sql.hive

import org.apache.spark.sql.hive.LocalHiveContext
import org.apache.spark.{SparkConf, SparkContext}

object HiveTableScanPrepare extends App {
  val sparkContext = new SparkContext(
    new SparkConf()
      .setMaster("local")
      .setAppName(getClass.getSimpleName.stripSuffix("$")))

  val hiveContext = new LocalHiveContext(sparkContext)

  import hiveContext._

  hql("drop table scan_csv")
  hql("drop table scan_rcfile")

  hql("""create table scan_csv (key int, value string)
        |  row format serde 'org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe'
        |  with serdeproperties ('field.delim'=',')
      """.stripMargin)

  hql(s"""load data local inpath "${args(0)}" into table scan_csv""")

  hql("""create table scan_rcfile (key int, value string)
        |  row format serde 'org.apache.hadoop.hive.serde2.columnar.ColumnarSerDe'
        |stored as
        |  inputformat 'org.apache.hadoop.hive.ql.io.RCFileInputFormat'
        |  outputformat 'org.apache.hadoop.hive.ql.io.RCFileOutputFormat'
      """.stripMargin)

  hql(
    """
      |from scan_csv
      |insert overwrite table scan_rcfile
      |select scan_csv.key, scan_csv.value
    """.stripMargin)
}
```

Benchmark code:

```scala
package org.apache.spark.examples.sql.hive

import org.apache.spark.sql.hive.LocalHiveContext
import org.apache.spark.{SparkConf, SparkContext}

object HiveTableScanBenchmark extends App {
  val sparkContext = new SparkContext(
    new SparkConf()
      .setMaster("local")
      .setAppName(getClass.getSimpleName.stripSuffix("$")))

  val hiveContext = new LocalHiveContext(sparkContext)

  import hiveContext._

  val scanCsv = hql("select key from scan_csv")
  val scanRcfile = hql("select key from scan_rcfile")

  val csvDuration = benchmark(scanCsv.count())
  val rcfileDuration = benchmark(scanRcfile.count())

  println(s"CSV: $csvDuration ms, RCFile: $rcfileDuration ms")

  def benchmark(f: => Unit) = {
    val begin = System.currentTimeMillis()
    f
    val end = System.currentTimeMillis()
    end - begin
  }
}
```

@marmbrus Please help review, thanks!

Author: Cheng Lian <[email protected]>

Closes #758 from liancheng/fastHiveTableScan and squashes the following commits:

4241a19 [Cheng Lian] Distinguishes sorted and possibly not sorted operations more accurately in HiveComparisonTest
cf640d8 [Cheng Lian] More HiveTableScan optimisations:
bf0e7dc [Cheng Lian] Added SortedOperation pattern to match *some* definitely sorted operations and avoid some sorting cost in HiveComparisonTest.
6d1c642 [Cheng Lian] Using ColumnProjectionUtils to optimise RCFile and ORC column pruning
eb62fd3 [Cheng Lian] [SPARK-1368] Optimized HiveTableScan

(cherry picked from commit 8f7141f)
Signed-off-by: Michael Armbrust <[email protected]>
@marmbrus
Copy link
Contributor

First merge as a committer :)

Thanks for doing this!

asfgit pushed a commit that referenced this pull request Jun 3, 2014
This is a follow up of PR #758.

The `unwrapHiveData` function is now composed statically before actual rows are scanned according to the field object inspector to avoid dynamic dispatching cost.

According to the same micro benchmark used in PR #758, this simple change brings slight performance boost: 2.5% for CSV table and 1% for RCFile table.

```
Optimized version:

CSV: 6870 ms, RCFile: 5687 ms
CSV: 6832 ms, RCFile: 5800 ms
CSV: 6822 ms, RCFile: 5679 ms
CSV: 6704 ms, RCFile: 5758 ms
CSV: 6819 ms, RCFile: 5725 ms

Original version:

CSV: 7042 ms, RCFile: 5667 ms
CSV: 6883 ms, RCFile: 5703 ms
CSV: 7115 ms, RCFile: 5665 ms
CSV: 7020 ms, RCFile: 5981 ms
CSV: 6871 ms, RCFile: 5906 ms
```

Author: Cheng Lian <[email protected]>

Closes #935 from liancheng/staticUnwrapping and squashes the following commits:

c49c70c [Cheng Lian] Avoid dynamic dispatching when unwrapping Hive data.
asfgit pushed a commit that referenced this pull request Jun 3, 2014
This is a follow up of PR #758.

The `unwrapHiveData` function is now composed statically before actual rows are scanned according to the field object inspector to avoid dynamic dispatching cost.

According to the same micro benchmark used in PR #758, this simple change brings slight performance boost: 2.5% for CSV table and 1% for RCFile table.

```
Optimized version:

CSV: 6870 ms, RCFile: 5687 ms
CSV: 6832 ms, RCFile: 5800 ms
CSV: 6822 ms, RCFile: 5679 ms
CSV: 6704 ms, RCFile: 5758 ms
CSV: 6819 ms, RCFile: 5725 ms

Original version:

CSV: 7042 ms, RCFile: 5667 ms
CSV: 6883 ms, RCFile: 5703 ms
CSV: 7115 ms, RCFile: 5665 ms
CSV: 7020 ms, RCFile: 5981 ms
CSV: 6871 ms, RCFile: 5906 ms
```

Author: Cheng Lian <[email protected]>

Closes #935 from liancheng/staticUnwrapping and squashes the following commits:

c49c70c [Cheng Lian] Avoid dynamic dispatching when unwrapping Hive data.

(cherry picked from commit 862283e)
Signed-off-by: Michael Armbrust <[email protected]>
pdeyhim pushed a commit to pdeyhim/spark-1 that referenced this pull request Jun 25, 2014
JIRA issue: [SPARK-1368](https://issues.apache.org/jira/browse/SPARK-1368)

This PR introduces two major updates:

- Replaced FP style code with `while` loop and reusable `GenericMutableRow` object in critical path of `HiveTableScan`.
- Using `ColumnProjectionUtils` to help optimizing RCFile and ORC column pruning.

My quick micro benchmark suggests these two optimizations made the optimized version 2x and 2.5x faster when scanning CSV table and RCFile table respectively:

```
Original:

[info] CSV: 27676 ms, RCFile: 26415 ms
[info] CSV: 27703 ms, RCFile: 26029 ms
[info] CSV: 27511 ms, RCFile: 25962 ms

Optimized:

[info] CSV: 13820 ms, RCFile: 10402 ms
[info] CSV: 14158 ms, RCFile: 10691 ms
[info] CSV: 13606 ms, RCFile: 10346 ms
```

The micro benchmark loads a 609MB CVS file (structurally similar to the `src` test table) into a normal Hive table with `LazySimpleSerDe` and a RCFile table, then scans these tables respectively.

Preparation code:

```scala
package org.apache.spark.examples.sql.hive

import org.apache.spark.sql.hive.LocalHiveContext
import org.apache.spark.{SparkConf, SparkContext}

object HiveTableScanPrepare extends App {
  val sparkContext = new SparkContext(
    new SparkConf()
      .setMaster("local")
      .setAppName(getClass.getSimpleName.stripSuffix("$")))

  val hiveContext = new LocalHiveContext(sparkContext)

  import hiveContext._

  hql("drop table scan_csv")
  hql("drop table scan_rcfile")

  hql("""create table scan_csv (key int, value string)
        |  row format serde 'org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe'
        |  with serdeproperties ('field.delim'=',')
      """.stripMargin)

  hql(s"""load data local inpath "${args(0)}" into table scan_csv""")

  hql("""create table scan_rcfile (key int, value string)
        |  row format serde 'org.apache.hadoop.hive.serde2.columnar.ColumnarSerDe'
        |stored as
        |  inputformat 'org.apache.hadoop.hive.ql.io.RCFileInputFormat'
        |  outputformat 'org.apache.hadoop.hive.ql.io.RCFileOutputFormat'
      """.stripMargin)

  hql(
    """
      |from scan_csv
      |insert overwrite table scan_rcfile
      |select scan_csv.key, scan_csv.value
    """.stripMargin)
}
```

Benchmark code:

```scala
package org.apache.spark.examples.sql.hive

import org.apache.spark.sql.hive.LocalHiveContext
import org.apache.spark.{SparkConf, SparkContext}

object HiveTableScanBenchmark extends App {
  val sparkContext = new SparkContext(
    new SparkConf()
      .setMaster("local")
      .setAppName(getClass.getSimpleName.stripSuffix("$")))

  val hiveContext = new LocalHiveContext(sparkContext)

  import hiveContext._

  val scanCsv = hql("select key from scan_csv")
  val scanRcfile = hql("select key from scan_rcfile")

  val csvDuration = benchmark(scanCsv.count())
  val rcfileDuration = benchmark(scanRcfile.count())

  println(s"CSV: $csvDuration ms, RCFile: $rcfileDuration ms")

  def benchmark(f: => Unit) = {
    val begin = System.currentTimeMillis()
    f
    val end = System.currentTimeMillis()
    end - begin
  }
}
```

@marmbrus Please help review, thanks!

Author: Cheng Lian <[email protected]>

Closes apache#758 from liancheng/fastHiveTableScan and squashes the following commits:

4241a19 [Cheng Lian] Distinguishes sorted and possibly not sorted operations more accurately in HiveComparisonTest
cf640d8 [Cheng Lian] More HiveTableScan optimisations:
bf0e7dc [Cheng Lian] Added SortedOperation pattern to match *some* definitely sorted operations and avoid some sorting cost in HiveComparisonTest.
6d1c642 [Cheng Lian] Using ColumnProjectionUtils to optimise RCFile and ORC column pruning
eb62fd3 [Cheng Lian] [SPARK-1368] Optimized HiveTableScan
pdeyhim pushed a commit to pdeyhim/spark-1 that referenced this pull request Jun 25, 2014
This is a follow up of PR apache#758.

The `unwrapHiveData` function is now composed statically before actual rows are scanned according to the field object inspector to avoid dynamic dispatching cost.

According to the same micro benchmark used in PR apache#758, this simple change brings slight performance boost: 2.5% for CSV table and 1% for RCFile table.

```
Optimized version:

CSV: 6870 ms, RCFile: 5687 ms
CSV: 6832 ms, RCFile: 5800 ms
CSV: 6822 ms, RCFile: 5679 ms
CSV: 6704 ms, RCFile: 5758 ms
CSV: 6819 ms, RCFile: 5725 ms

Original version:

CSV: 7042 ms, RCFile: 5667 ms
CSV: 6883 ms, RCFile: 5703 ms
CSV: 7115 ms, RCFile: 5665 ms
CSV: 7020 ms, RCFile: 5981 ms
CSV: 6871 ms, RCFile: 5906 ms
```

Author: Cheng Lian <[email protected]>

Closes apache#935 from liancheng/staticUnwrapping and squashes the following commits:

c49c70c [Cheng Lian] Avoid dynamic dispatching when unwrapping Hive data.
xiliu82 pushed a commit to xiliu82/spark that referenced this pull request Sep 4, 2014
JIRA issue: [SPARK-1368](https://issues.apache.org/jira/browse/SPARK-1368)

This PR introduces two major updates:

- Replaced FP style code with `while` loop and reusable `GenericMutableRow` object in critical path of `HiveTableScan`.
- Using `ColumnProjectionUtils` to help optimizing RCFile and ORC column pruning.

My quick micro benchmark suggests these two optimizations made the optimized version 2x and 2.5x faster when scanning CSV table and RCFile table respectively:

```
Original:

[info] CSV: 27676 ms, RCFile: 26415 ms
[info] CSV: 27703 ms, RCFile: 26029 ms
[info] CSV: 27511 ms, RCFile: 25962 ms

Optimized:

[info] CSV: 13820 ms, RCFile: 10402 ms
[info] CSV: 14158 ms, RCFile: 10691 ms
[info] CSV: 13606 ms, RCFile: 10346 ms
```

The micro benchmark loads a 609MB CVS file (structurally similar to the `src` test table) into a normal Hive table with `LazySimpleSerDe` and a RCFile table, then scans these tables respectively.

Preparation code:

```scala
package org.apache.spark.examples.sql.hive

import org.apache.spark.sql.hive.LocalHiveContext
import org.apache.spark.{SparkConf, SparkContext}

object HiveTableScanPrepare extends App {
  val sparkContext = new SparkContext(
    new SparkConf()
      .setMaster("local")
      .setAppName(getClass.getSimpleName.stripSuffix("$")))

  val hiveContext = new LocalHiveContext(sparkContext)

  import hiveContext._

  hql("drop table scan_csv")
  hql("drop table scan_rcfile")

  hql("""create table scan_csv (key int, value string)
        |  row format serde 'org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe'
        |  with serdeproperties ('field.delim'=',')
      """.stripMargin)

  hql(s"""load data local inpath "${args(0)}" into table scan_csv""")

  hql("""create table scan_rcfile (key int, value string)
        |  row format serde 'org.apache.hadoop.hive.serde2.columnar.ColumnarSerDe'
        |stored as
        |  inputformat 'org.apache.hadoop.hive.ql.io.RCFileInputFormat'
        |  outputformat 'org.apache.hadoop.hive.ql.io.RCFileOutputFormat'
      """.stripMargin)

  hql(
    """
      |from scan_csv
      |insert overwrite table scan_rcfile
      |select scan_csv.key, scan_csv.value
    """.stripMargin)
}
```

Benchmark code:

```scala
package org.apache.spark.examples.sql.hive

import org.apache.spark.sql.hive.LocalHiveContext
import org.apache.spark.{SparkConf, SparkContext}

object HiveTableScanBenchmark extends App {
  val sparkContext = new SparkContext(
    new SparkConf()
      .setMaster("local")
      .setAppName(getClass.getSimpleName.stripSuffix("$")))

  val hiveContext = new LocalHiveContext(sparkContext)

  import hiveContext._

  val scanCsv = hql("select key from scan_csv")
  val scanRcfile = hql("select key from scan_rcfile")

  val csvDuration = benchmark(scanCsv.count())
  val rcfileDuration = benchmark(scanRcfile.count())

  println(s"CSV: $csvDuration ms, RCFile: $rcfileDuration ms")

  def benchmark(f: => Unit) = {
    val begin = System.currentTimeMillis()
    f
    val end = System.currentTimeMillis()
    end - begin
  }
}
```

@marmbrus Please help review, thanks!

Author: Cheng Lian <[email protected]>

Closes apache#758 from liancheng/fastHiveTableScan and squashes the following commits:

4241a19 [Cheng Lian] Distinguishes sorted and possibly not sorted operations more accurately in HiveComparisonTest
cf640d8 [Cheng Lian] More HiveTableScan optimisations:
bf0e7dc [Cheng Lian] Added SortedOperation pattern to match *some* definitely sorted operations and avoid some sorting cost in HiveComparisonTest.
6d1c642 [Cheng Lian] Using ColumnProjectionUtils to optimise RCFile and ORC column pruning
eb62fd3 [Cheng Lian] [SPARK-1368] Optimized HiveTableScan
xiliu82 pushed a commit to xiliu82/spark that referenced this pull request Sep 4, 2014
This is a follow up of PR apache#758.

The `unwrapHiveData` function is now composed statically before actual rows are scanned according to the field object inspector to avoid dynamic dispatching cost.

According to the same micro benchmark used in PR apache#758, this simple change brings slight performance boost: 2.5% for CSV table and 1% for RCFile table.

```
Optimized version:

CSV: 6870 ms, RCFile: 5687 ms
CSV: 6832 ms, RCFile: 5800 ms
CSV: 6822 ms, RCFile: 5679 ms
CSV: 6704 ms, RCFile: 5758 ms
CSV: 6819 ms, RCFile: 5725 ms

Original version:

CSV: 7042 ms, RCFile: 5667 ms
CSV: 6883 ms, RCFile: 5703 ms
CSV: 7115 ms, RCFile: 5665 ms
CSV: 7020 ms, RCFile: 5981 ms
CSV: 6871 ms, RCFile: 5906 ms
```

Author: Cheng Lian <[email protected]>

Closes apache#935 from liancheng/staticUnwrapping and squashes the following commits:

c49c70c [Cheng Lian] Avoid dynamic dispatching when unwrapping Hive data.
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

3 participants