Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[doc][streaming] Fixed broken link in mllib section #5600

Closed
wants to merge 1 commit into from
Closed
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion docs/streaming-programming-guide.md
Original file line number Diff line number Diff line change
Expand Up @@ -1588,7 +1588,7 @@ See the [DataFrames and SQL](sql-programming-guide.html) guide to learn more abo
***

## MLlib Operations
You can also easily use machine learning algorithms provided by [MLlib](mllib-guide.html). First of all, there are streaming machine learning algorithms (e.g. (Streaming Linear Regression](mllib-linear-methods.html#streaming-linear-regression), [Streaming KMeans](mllib-clustering.html#streaming-k-means), etc.) which can simultaneously learn from the streaming data as well as apply the model on the streaming data. Beyond these, for a much larger class of machine learning algorithms, you can learn a learning model offline (i.e. using historical data) and then apply the model online on streaming data. See the [MLlib](mllib-guide.html) guide for more details.
You can also easily use machine learning algorithms provided by [MLlib](mllib-guide.html). First of all, there are streaming machine learning algorithms (e.g. [Streaming Linear Regression](mllib-linear-methods.html#streaming-linear-regression), [Streaming KMeans](mllib-clustering.html#streaming-k-means), etc.) which can simultaneously learn from the streaming data as well as apply the model on the streaming data. Beyond these, for a much larger class of machine learning algorithms, you can learn a learning model offline (i.e. using historical data) and then apply the model online on streaming data. See the [MLlib](mllib-guide.html) guide for more details.

***

Expand Down