Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[SPARK-11496][GRAPHX] Parallel implementation of personalized pagerank #14998

Closed
wants to merge 21 commits into from
Closed
Show file tree
Hide file tree
Changes from 18 commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 5 additions & 0 deletions graphx/pom.xml
Original file line number Diff line number Diff line change
Expand Up @@ -46,6 +46,11 @@
<type>test-jar</type>
<scope>test</scope>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-mllib-local_${scala.binary.version}</artifactId>
<version>${project.version}</version>
</dependency>
<dependency>
<groupId>org.apache.xbean</groupId>
<artifactId>xbean-asm5-shaded</artifactId>
Expand Down
12 changes: 11 additions & 1 deletion graphx/src/main/scala/org/apache/spark/graphx/GraphOps.scala
Original file line number Diff line number Diff line change
Expand Up @@ -20,9 +20,10 @@ package org.apache.spark.graphx
import scala.reflect.ClassTag
import scala.util.Random

import org.apache.spark.SparkException
import org.apache.spark.graphx.lib._
import org.apache.spark.ml.linalg.Vector
import org.apache.spark.rdd.RDD
import org.apache.spark.SparkException

/**
* Contains additional functionality for [[Graph]]. All operations are expressed in terms of the
Expand Down Expand Up @@ -391,6 +392,15 @@ class GraphOps[VD: ClassTag, ED: ClassTag](graph: Graph[VD, ED]) extends Seriali
PageRank.runUntilConvergenceWithOptions(graph, tol, resetProb, Some(src))
}

/**
* Run parallel personalized PageRank for a given array of source vertices, such
* that all random walks are started relative to the source vertices
*/
def staticParallelPersonalizedPageRank(sources: Array[VertexId], numIter: Int,
resetProb: Double = 0.15) : Graph[Vector, Double] = {
PageRank.runParallelPersonalizedPageRank(graph, numIter, resetProb, sources)
}

/**
* Run Personalized PageRank for a fixed number of iterations with
* with all iterations originating at the source node
Expand Down
82 changes: 82 additions & 0 deletions graphx/src/main/scala/org/apache/spark/graphx/lib/PageRank.scala
Original file line number Diff line number Diff line change
Expand Up @@ -19,8 +19,11 @@ package org.apache.spark.graphx.lib

import scala.reflect.ClassTag

import breeze.linalg.{Vector => BV}

import org.apache.spark.graphx._
import org.apache.spark.internal.Logging
import org.apache.spark.ml.linalg.{Vector, Vectors}

/**
* PageRank algorithm implementation. There are two implementations of PageRank implemented.
Expand Down Expand Up @@ -162,6 +165,85 @@ object PageRank extends Logging {
rankGraph
}

/**
* Run Personalized PageRank for a fixed number of iterations, for a
* set of starting nodes in parallel. Returns a graph with vertex attributes
* containing the pagerank relative to all starting nodes (as a sparse vector) and
* edge attributes the normalized edge weight
*
* @tparam VD The original vertex attribute (not used)
* @tparam ED The original edge attribute (not used)
*
* @param graph The graph on which to compute personalized pagerank
* @param numIter The number of iterations to run
* @param resetProb The random reset probability
* @param sources The list of sources to compute personalized pagerank from
* @return the graph with vertex attributes
* containing the pagerank relative to all starting nodes (as a sparse vector) and
* edge attributes the normalized edge weight
*/
def runParallelPersonalizedPageRank[VD: ClassTag, ED: ClassTag](graph: Graph[VD, ED],
numIter: Int, resetProb: Double = 0.15,
sources: Array[VertexId]): Graph[Vector, Double] = {
// TODO if one sources vertex id is outside of the int range
// we won't be able to store its activations in a sparse vector
val zero = Vectors.sparse(sources.size, List()).asBreeze
val sourcesInitMap = sources.zipWithIndex.map { case (vid, i) =>
val v = Vectors.sparse(sources.size, Array(i), Array(resetProb)).asBreeze
(vid, v)
}.toMap
val sc = graph.vertices.sparkContext
val sourcesInitMapBC = sc.broadcast(sourcesInitMap)
// Initialize the PageRank graph with each edge attribute having
// weight 1/outDegree and each source vertex with attribute 1.0.
var rankGraph = graph
// Associate the degree with each vertex
.outerJoinVertices(graph.outDegrees) { (vid, vdata, deg) => deg.getOrElse(0) }
// Set the weight on the edges based on the degree
.mapTriplets(e => 1.0 / e.srcAttr, TripletFields.Src)
.mapVertices { (vid, attr) =>
if (sourcesInitMapBC.value contains vid) {
sourcesInitMapBC.value(vid)
} else {
zero
}
}

var i = 0
while (i < numIter) {
val prevRankGraph = rankGraph
// Propagates the message along outbound edges
// and adding start nodes back in with activation resetProb
val rankUpdates = rankGraph.aggregateMessages[BV[Double]](
ctx => ctx.sendToDst(ctx.srcAttr :* ctx.attr),
(a : BV[Double], b : BV[Double]) => a :+ b, TripletFields.Src)

rankGraph = rankGraph.joinVertices(rankUpdates) {
(vid, oldRank, msgSum) =>
val popActivations: BV[Double] = msgSum :* (1.0 - resetProb)
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

We found that breeze is fairly slow by doing this operation. Is it possible to use native spark vector, and use our linear algebra package?

Copy link
Author

@moustaki moustaki Sep 9, 2016

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Chatted offline, but decided to not switch to native Spark operations for now, as it doesn't support adding sparse vectors, which the above does

val resetActivations = if (sourcesInitMapBC.value contains vid) {
sourcesInitMapBC.value(vid)
} else {
zero
}
popActivations :+ resetActivations
}.cache()

rankGraph.edges.foreachPartition(x => {}) // also materializes rankGraph.vertices
prevRankGraph.vertices.unpersist(false)
prevRankGraph.edges.unpersist(false)

Copy link
Member

@dbtsai dbtsai Sep 8, 2016

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

add sourcesInitMapBC.destory(false) here, otherwise, the explicit broadcast variable will not be deleted.

logInfo(s"Parallel Personalized PageRank finished iteration $i.")

i += 1
}

rankGraph
.mapVertices { (vid, attr) =>
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

move it up one line.

Vectors.fromBreeze(attr)
}
}

/**
* Run a dynamic version of PageRank returning a graph with vertex attributes containing the
* PageRank and edge attributes containing the normalized edge weight.
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -118,11 +118,29 @@ class PageRankSuite extends SparkFunSuite with LocalSparkContext {
val dynamicRanks = starGraph.personalizedPageRank(0, 0, resetProb).vertices.cache()
assert(compareRanks(staticRanks2, dynamicRanks) < errorTol)

val parallelStaticRanks1 = starGraph
.staticParallelPersonalizedPageRank(Array(0), 1, resetProb).mapVertices {
case (vertexId, vector) => vector(0)
}.vertices.cache()
assert(compareRanks(staticRanks1, parallelStaticRanks1) < errorTol)

val parallelStaticRanks2 = starGraph
.staticParallelPersonalizedPageRank(Array(0, 1), 2, resetProb).mapVertices {
case (vertexId, vector) => vector(0)
}.vertices.cache()
assert(compareRanks(staticRanks2, parallelStaticRanks2) < errorTol)

// We have one outbound edge from 1 to 0
val otherStaticRanks2 = starGraph.staticPersonalizedPageRank(1, numIter = 2, resetProb)
.vertices.cache()
val otherDynamicRanks = starGraph.personalizedPageRank(1, 0, resetProb).vertices.cache()
val otherParallelStaticRanks2 = starGraph
.staticParallelPersonalizedPageRank(Array(0, 1), 2, resetProb).mapVertices {
case (vertexId, vector) => vector(1)
}.vertices.cache()
assert(compareRanks(otherDynamicRanks, otherStaticRanks2) < errorTol)
assert(compareRanks(otherStaticRanks2, otherParallelStaticRanks2) < errorTol)
assert(compareRanks(otherDynamicRanks, otherParallelStaticRanks2) < errorTol)
}
} // end of test Star PersonalPageRank

Expand Down Expand Up @@ -177,6 +195,12 @@ class PageRankSuite extends SparkFunSuite with LocalSparkContext {
val dynamicRanks = chain.personalizedPageRank(4, tol, resetProb).vertices

assert(compareRanks(staticRanks, dynamicRanks) < errorTol)

val parallelStaticRanks = chain
.staticParallelPersonalizedPageRank(Array(4), numIter, resetProb).mapVertices {
case (vertexId, vector) => vector(0)
}.vertices.cache()
assert(compareRanks(staticRanks, parallelStaticRanks) < errorTol)
}
}
}