Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[MLLIB] [SPARK-2222] Add multiclass evaluation metrics #1155

Closed
wants to merge 15 commits into from
Closed
Original file line number Diff line number Diff line change
@@ -0,0 +1,190 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

package org.apache.spark.mllib.evaluation

import scala.collection.Map

import org.apache.spark.SparkContext._
import org.apache.spark.annotation.Experimental
import org.apache.spark.mllib.linalg.{Matrices, Matrix}
import org.apache.spark.rdd.RDD

/**
* ::Experimental::
* Evaluator for multiclass classification.
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Insert ::Experimental:: to the beginning of the doc to make it show up in the generated doc.

*
* @param predictionAndLabels an RDD of (prediction, label) pairs.
*/
@Experimental
class MulticlassMetrics(predictionAndLabels: RDD[(Double, Double)]) {

private lazy val labelCountByClass: Map[Double, Long] = predictionAndLabels.values.countByValue()
private lazy val labelCount: Long = labelCountByClass.values.sum
private lazy val tpByClass: Map[Double, Int] = predictionAndLabels
.map { case (prediction, label) =>
(label, if (label == prediction) 1 else 0)
}.reduceByKey(_ + _)
.collectAsMap()
private lazy val fpByClass: Map[Double, Int] = predictionAndLabels
.map { case (prediction, label) =>
(prediction, if (prediction != label) 1 else 0)
}.reduceByKey(_ + _)
.collectAsMap()
private lazy val confusions = predictionAndLabels
.map { case (prediction, label) =>
((label, prediction), 1)
}.reduceByKey(_ + _)
.collectAsMap()

/**
* Returns confusion matrix:
* predicted classes are in columns,
* they are ordered by class label ascending,
* as in "labels"
*/
def confusionMatrix: Matrix = {
val n = labels.size
val values = Array.ofDim[Double](n * n)
var i = 0
while (i < n) {
var j = 0
while (j < n) {
values(i + j * n) = confusions.getOrElse((labels(i), labels(j)), 0).toDouble
j += 1
}
i += 1
}
Matrices.dense(n, n, values)
}

/**
* Returns true positive rate for a given label (category)
* @param label the label.
*/
def truePositiveRate(label: Double): Double = recall(label)

/**
* Returns false positive rate for a given label (category)
* @param label the label.
*/
def falsePositiveRate(label: Double): Double = {
val fp = fpByClass.getOrElse(label, 0)
fp.toDouble / (labelCount - labelCountByClass(label))
}

/**
* Returns precision for a given label (category)
* @param label the label.
*/
def precision(label: Double): Double = {
val tp = tpByClass(label)
val fp = fpByClass.getOrElse(label, 0)
if (tp + fp == 0) 0 else tp.toDouble / (tp + fp)
}

/**
* Returns recall for a given label (category)
* @param label the label.
*/
def recall(label: Double): Double = tpByClass(label).toDouble / labelCountByClass(label)

/**
* Returns f-measure for a given label (category)
* @param label the label.
* @param beta the beta parameter.
*/
def fMeasure(label: Double, beta: Double): Double = {
val p = precision(label)
val r = recall(label)
val betaSqrd = beta * beta
if (p + r == 0) 0 else (1 + betaSqrd) * p * r / (betaSqrd * p + r)
}

/**
* Returns f1-measure for a given label (category)
* @param label the label.
*/
def fMeasure(label: Double): Double = fMeasure(label, 1.0)

/**
* Returns precision
*/
lazy val precision: Double = tpByClass.values.sum.toDouble / labelCount

/**
* Returns recall
* (equals to precision for multiclass classifier
* because sum of all false positives is equal to sum
* of all false negatives)
*/
lazy val recall: Double = precision

/**
* Returns f-measure
* (equals to precision and recall because precision equals recall)
*/
lazy val fMeasure: Double = precision

/**
* Returns weighted true positive rate
* (equals to precision, recall and f-measure)
*/
lazy val weightedTruePositiveRate: Double = weightedRecall

/**
* Returns weighted false positive rate
*/
lazy val weightedFalsePositiveRate: Double = labelCountByClass.map { case (category, count) =>
falsePositiveRate(category) * count.toDouble / labelCount
}.sum

/**
* Returns weighted averaged recall
* (equals to precision, recall and f-measure)
*/
lazy val weightedRecall: Double = labelCountByClass.map { case (category, count) =>
recall(category) * count.toDouble / labelCount
}.sum

/**
* Returns weighted averaged precision
*/
lazy val weightedPrecision: Double = labelCountByClass.map { case (category, count) =>
precision(category) * count.toDouble / labelCount
}.sum

/**
* Returns weighted averaged f-measure
* @param beta the beta parameter.
*/
def weightedFMeasure(beta: Double): Double = labelCountByClass.map { case (category, count) =>
fMeasure(category, beta) * count.toDouble / labelCount
}.sum

/**
* Returns weighted averaged f1-measure
*/
lazy val weightedFMeasure: Double = labelCountByClass.map { case (category, count) =>
fMeasure(category, 1.0) * count.toDouble / labelCount
}.sum

/**
* Returns the sequence of labels in ascending order
*/
lazy val labels: Array[Double] = tpByClass.keys.toArray.sorted
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,90 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

package org.apache.spark.mllib.evaluation

import org.scalatest.FunSuite
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

organize imports into groups


import org.apache.spark.mllib.linalg.Matrices
import org.apache.spark.mllib.util.LocalSparkContext

class MulticlassMetricsSuite extends FunSuite with LocalSparkContext {
test("Multiclass evaluation metrics") {
/*
* Confusion matrix for 3-class classification with total 9 instances:
* |2|1|1| true class0 (4 instances)
* |1|3|0| true class1 (4 instances)
* |0|0|1| true class2 (1 instance)
*/
val confusionMatrix = Matrices.dense(3, 3, Array(2, 1, 0, 1, 3, 0, 1, 0, 1))
val labels = Array(0.0, 1.0, 2.0)
val predictionAndLabels = sc.parallelize(
Seq((0.0, 0.0), (0.0, 1.0), (0.0, 0.0), (1.0, 0.0), (1.0, 1.0),
(1.0, 1.0), (1.0, 1.0), (2.0, 2.0), (2.0, 0.0)), 2)
val metrics = new MulticlassMetrics(predictionAndLabels)
val delta = 0.0000001
val fpRate0 = 1.0 / (9 - 4)
val fpRate1 = 1.0 / (9 - 4)
val fpRate2 = 1.0 / (9 - 1)
val precision0 = 2.0 / (2 + 1)
val precision1 = 3.0 / (3 + 1)
val precision2 = 1.0 / (1 + 1)
val recall0 = 2.0 / (2 + 2)
val recall1 = 3.0 / (3 + 1)
val recall2 = 1.0 / (1 + 0)
val f1measure0 = 2 * precision0 * recall0 / (precision0 + recall0)
val f1measure1 = 2 * precision1 * recall1 / (precision1 + recall1)
val f1measure2 = 2 * precision2 * recall2 / (precision2 + recall2)
val f2measure0 = (1 + 2 * 2) * precision0 * recall0 / (2 * 2 * precision0 + recall0)
val f2measure1 = (1 + 2 * 2) * precision1 * recall1 / (2 * 2 * precision1 + recall1)
val f2measure2 = (1 + 2 * 2) * precision2 * recall2 / (2 * 2 * precision2 + recall2)

assert(metrics.confusionMatrix.toArray.sameElements(confusionMatrix.toArray))
assert(math.abs(metrics.falsePositiveRate(0.0) - fpRate0) < delta)
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

add a test for F2?

assert(math.abs(metrics.falsePositiveRate(1.0) - fpRate1) < delta)
assert(math.abs(metrics.falsePositiveRate(2.0) - fpRate2) < delta)
assert(math.abs(metrics.precision(0.0) - precision0) < delta)
assert(math.abs(metrics.precision(1.0) - precision1) < delta)
assert(math.abs(metrics.precision(2.0) - precision2) < delta)
assert(math.abs(metrics.recall(0.0) - recall0) < delta)
assert(math.abs(metrics.recall(1.0) - recall1) < delta)
assert(math.abs(metrics.recall(2.0) - recall2) < delta)
assert(math.abs(metrics.fMeasure(0.0) - f1measure0) < delta)
assert(math.abs(metrics.fMeasure(1.0) - f1measure1) < delta)
assert(math.abs(metrics.fMeasure(2.0) - f1measure2) < delta)
assert(math.abs(metrics.fMeasure(0.0, 2.0) - f2measure0) < delta)
assert(math.abs(metrics.fMeasure(1.0, 2.0) - f2measure1) < delta)
assert(math.abs(metrics.fMeasure(2.0, 2.0) - f2measure2) < delta)

assert(math.abs(metrics.recall -
(2.0 + 3.0 + 1.0) / ((2 + 3 + 1) + (1 + 1 + 1))) < delta)
assert(math.abs(metrics.recall - metrics.precision) < delta)
assert(math.abs(metrics.recall - metrics.fMeasure) < delta)
assert(math.abs(metrics.recall - metrics.weightedRecall) < delta)
assert(math.abs(metrics.weightedFalsePositiveRate -
((4.0 / 9) * fpRate0 + (4.0 / 9) * fpRate1 + (1.0 / 9) * fpRate2)) < delta)
assert(math.abs(metrics.weightedPrecision -
((4.0 / 9) * precision0 + (4.0 / 9) * precision1 + (1.0 / 9) * precision2)) < delta)
assert(math.abs(metrics.weightedRecall -
((4.0 / 9) * recall0 + (4.0 / 9) * recall1 + (1.0 / 9) * recall2)) < delta)
assert(math.abs(metrics.weightedFMeasure -
((4.0 / 9) * f1measure0 + (4.0 / 9) * f1measure1 + (1.0 / 9) * f1measure2)) < delta)
assert(math.abs(metrics.weightedFMeasure(2.0) -
((4.0 / 9) * f2measure0 + (4.0 / 9) * f2measure1 + (1.0 / 9) * f2measure2)) < delta)
assert(metrics.labels.sameElements(labels))
}
}