Skip to content

Commit

Permalink
[SPARK-13749][SQL] Faster pivot implementation for many distinct valu…
Browse files Browse the repository at this point in the history
…es with two phase aggregation

## What changes were proposed in this pull request?

The existing implementation of pivot translates into a single aggregation with one aggregate per distinct pivot value. When the number of distinct pivot values is large (say 1000+) this can get extremely slow since each input value gets evaluated on every aggregate even though it only affects the value of one of them.

I'm proposing an alternate strategy for when there are 10+ (somewhat arbitrary threshold) distinct pivot values. We do two phases of aggregation. In the first we group by the grouping columns plus the pivot column and perform the specified aggregations (one or sometimes more). In the second aggregation we group by the grouping columns and use the new (non public) PivotFirst aggregate that rearranges the outputs of the first aggregation into an array indexed by the pivot value. Finally we do a project to extract the array entries into the appropriate output column.

## How was this patch tested?

Additional unit tests in DataFramePivotSuite and manual larger scale testing.

Author: Andrew Ray <[email protected]>

Closes #11583 from aray/fast-pivot.
  • Loading branch information
aray authored and yhuai committed May 2, 2016
1 parent 0a30269 commit 9927441
Show file tree
Hide file tree
Showing 3 changed files with 296 additions and 33 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -363,43 +363,68 @@ class Analyzer(

object ResolvePivot extends Rule[LogicalPlan] {
def apply(plan: LogicalPlan): LogicalPlan = plan transform {
case p: Pivot if !p.childrenResolved | !p.aggregates.forall(_.resolved) => p
case p: Pivot if !p.childrenResolved | !p.aggregates.forall(_.resolved)
| !p.groupByExprs.forall(_.resolved) | !p.pivotColumn.resolved => p
case Pivot(groupByExprs, pivotColumn, pivotValues, aggregates, child) =>
val singleAgg = aggregates.size == 1
val pivotAggregates: Seq[NamedExpression] = pivotValues.flatMap { value =>
def ifExpr(expr: Expression) = {
If(EqualTo(pivotColumn, value), expr, Literal(null))
def outputName(value: Literal, aggregate: Expression): String = {
if (singleAgg) value.toString else value + "_" + aggregate.sql
}
if (aggregates.forall(a => PivotFirst.supportsDataType(a.dataType))) {
// Since evaluating |pivotValues| if statements for each input row can get slow this is an
// alternate plan that instead uses two steps of aggregation.
val namedAggExps: Seq[NamedExpression] = aggregates.map(a => Alias(a, a.sql)())
val namedPivotCol = pivotColumn match {
case n: NamedExpression => n
case _ => Alias(pivotColumn, "__pivot_col")()
}
val bigGroup = groupByExprs :+ namedPivotCol
val firstAgg = Aggregate(bigGroup, bigGroup ++ namedAggExps, child)
val castPivotValues = pivotValues.map(Cast(_, pivotColumn.dataType).eval(EmptyRow))
val pivotAggs = namedAggExps.map { a =>
Alias(PivotFirst(namedPivotCol.toAttribute, a.toAttribute, castPivotValues)
.toAggregateExpression()
, "__pivot_" + a.sql)()
}
val secondAgg = Aggregate(groupByExprs, groupByExprs ++ pivotAggs, firstAgg)
val pivotAggAttribute = pivotAggs.map(_.toAttribute)
val pivotOutputs = pivotValues.zipWithIndex.flatMap { case (value, i) =>
aggregates.zip(pivotAggAttribute).map { case (aggregate, pivotAtt) =>
Alias(ExtractValue(pivotAtt, Literal(i), resolver), outputName(value, aggregate))()
}
}
aggregates.map { aggregate =>
val filteredAggregate = aggregate.transformDown {
// Assumption is the aggregate function ignores nulls. This is true for all current
// AggregateFunction's with the exception of First and Last in their default mode
// (which we handle) and possibly some Hive UDAF's.
case First(expr, _) =>
First(ifExpr(expr), Literal(true))
case Last(expr, _) =>
Last(ifExpr(expr), Literal(true))
case a: AggregateFunction =>
a.withNewChildren(a.children.map(ifExpr))
}.transform {
// We are duplicating aggregates that are now computing a different value for each
// pivot value.
// TODO: Don't construct the physical container until after analysis.
case ae: AggregateExpression => ae.copy(resultId = NamedExpression.newExprId)
Project(groupByExprs ++ pivotOutputs, secondAgg)
} else {
val pivotAggregates: Seq[NamedExpression] = pivotValues.flatMap { value =>
def ifExpr(expr: Expression) = {
If(EqualTo(pivotColumn, value), expr, Literal(null))
}
if (filteredAggregate.fastEquals(aggregate)) {
throw new AnalysisException(
s"Aggregate expression required for pivot, found '$aggregate'")
aggregates.map { aggregate =>
val filteredAggregate = aggregate.transformDown {
// Assumption is the aggregate function ignores nulls. This is true for all current
// AggregateFunction's with the exception of First and Last in their default mode
// (which we handle) and possibly some Hive UDAF's.
case First(expr, _) =>
First(ifExpr(expr), Literal(true))
case Last(expr, _) =>
Last(ifExpr(expr), Literal(true))
case a: AggregateFunction =>
a.withNewChildren(a.children.map(ifExpr))
}.transform {
// We are duplicating aggregates that are now computing a different value for each
// pivot value.
// TODO: Don't construct the physical container until after analysis.
case ae: AggregateExpression => ae.copy(resultId = NamedExpression.newExprId)
}
if (filteredAggregate.fastEquals(aggregate)) {
throw new AnalysisException(
s"Aggregate expression required for pivot, found '$aggregate'")
}
Alias(filteredAggregate, outputName(value, aggregate))()
}
val name = if (singleAgg) value.toString else value + "_" + aggregate.sql
Alias(filteredAggregate, name)()
}
Aggregate(groupByExprs, groupByExprs ++ pivotAggregates, child)
}
val newGroupByExprs = groupByExprs.map {
case UnresolvedAlias(e, _) => e
case e => e
}
Aggregate(newGroupByExprs, groupByExprs ++ pivotAggregates, child)
}
}

Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,152 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

package org.apache.spark.sql.catalyst.expressions.aggregate

import scala.collection.immutable.HashMap

import org.apache.spark.sql.catalyst.InternalRow
import org.apache.spark.sql.catalyst.expressions._
import org.apache.spark.sql.catalyst.util.GenericArrayData
import org.apache.spark.sql.types._

object PivotFirst {

def supportsDataType(dataType: DataType): Boolean = updateFunction.isDefinedAt(dataType)

// Currently UnsafeRow does not support the generic update method (throws
// UnsupportedOperationException), so we need to explicitly support each DataType.
private val updateFunction: PartialFunction[DataType, (MutableRow, Int, Any) => Unit] = {
case DoubleType =>
(row, offset, value) => row.setDouble(offset, value.asInstanceOf[Double])
case IntegerType =>
(row, offset, value) => row.setInt(offset, value.asInstanceOf[Int])
case LongType =>
(row, offset, value) => row.setLong(offset, value.asInstanceOf[Long])
case FloatType =>
(row, offset, value) => row.setFloat(offset, value.asInstanceOf[Float])
case BooleanType =>
(row, offset, value) => row.setBoolean(offset, value.asInstanceOf[Boolean])
case ShortType =>
(row, offset, value) => row.setShort(offset, value.asInstanceOf[Short])
case ByteType =>
(row, offset, value) => row.setByte(offset, value.asInstanceOf[Byte])
case d: DecimalType =>
(row, offset, value) => row.setDecimal(offset, value.asInstanceOf[Decimal], d.precision)
}
}

/**
* PivotFirst is a aggregate function used in the second phase of a two phase pivot to do the
* required rearrangement of values into pivoted form.
*
* For example on an input of
* A | B
* --+--
* x | 1
* y | 2
* z | 3
*
* with pivotColumn=A, valueColumn=B, and pivotColumnValues=[z,y] the output is [3,2].
*
* @param pivotColumn column that determines which output position to put valueColumn in.
* @param valueColumn the column that is being rearranged.
* @param pivotColumnValues the list of pivotColumn values in the order of desired output. Values
* not listed here will be ignored.
*/
case class PivotFirst(
pivotColumn: Expression,
valueColumn: Expression,
pivotColumnValues: Seq[Any],
mutableAggBufferOffset: Int = 0,
inputAggBufferOffset: Int = 0) extends ImperativeAggregate {

override val children: Seq[Expression] = pivotColumn :: valueColumn :: Nil

override lazy val inputTypes: Seq[AbstractDataType] = children.map(_.dataType)

override val nullable: Boolean = false

val valueDataType = valueColumn.dataType

override val dataType: DataType = ArrayType(valueDataType)

val pivotIndex = HashMap(pivotColumnValues.zipWithIndex: _*)

val indexSize = pivotIndex.size

private val updateRow: (MutableRow, Int, Any) => Unit = PivotFirst.updateFunction(valueDataType)

override def update(mutableAggBuffer: MutableRow, inputRow: InternalRow): Unit = {
val pivotColValue = pivotColumn.eval(inputRow)
if (pivotColValue != null) {
// We ignore rows whose pivot column value is not in the list of pivot column values.
val index = pivotIndex.getOrElse(pivotColValue, -1)
if (index >= 0) {
val value = valueColumn.eval(inputRow)
if (value != null) {
updateRow(mutableAggBuffer, mutableAggBufferOffset + index, value)
}
}
}
}

override def merge(mutableAggBuffer: MutableRow, inputAggBuffer: InternalRow): Unit = {
for (i <- 0 until indexSize) {
if (!inputAggBuffer.isNullAt(inputAggBufferOffset + i)) {
val value = inputAggBuffer.get(inputAggBufferOffset + i, valueDataType)
updateRow(mutableAggBuffer, mutableAggBufferOffset + i, value)
}
}
}

override def initialize(mutableAggBuffer: MutableRow): Unit = valueDataType match {
case d: DecimalType =>
// Per doc of setDecimal we need to do this instead of setNullAt for DecimalType.
for (i <- 0 until indexSize) {
mutableAggBuffer.setDecimal(mutableAggBufferOffset + i, null, d.precision)
}
case _ =>
for (i <- 0 until indexSize) {
mutableAggBuffer.setNullAt(mutableAggBufferOffset + i)
}
}

override def eval(input: InternalRow): Any = {
val result = new Array[Any](indexSize)
for (i <- 0 until indexSize) {
result(i) = input.get(mutableAggBufferOffset + i, valueDataType)
}
new GenericArrayData(result)
}

override def withNewInputAggBufferOffset(newInputAggBufferOffset: Int): ImperativeAggregate =
copy(inputAggBufferOffset = newInputAggBufferOffset)

override def withNewMutableAggBufferOffset(newMutableAggBufferOffset: Int): ImperativeAggregate =
copy(mutableAggBufferOffset = newMutableAggBufferOffset)


override lazy val aggBufferAttributes: Seq[AttributeReference] =
pivotIndex.toList.sortBy(_._2).map(kv => AttributeReference(kv._1.toString, valueDataType)())

override lazy val aggBufferSchema: StructType = StructType.fromAttributes(aggBufferAttributes)

override lazy val inputAggBufferAttributes: Seq[AttributeReference] =
aggBufferAttributes.map(_.newInstance())
}

Original file line number Diff line number Diff line change
Expand Up @@ -17,29 +17,31 @@

package org.apache.spark.sql

import org.apache.spark.sql.catalyst.expressions.aggregate.PivotFirst
import org.apache.spark.sql.functions._
import org.apache.spark.sql.internal.SQLConf
import org.apache.spark.sql.test.SharedSQLContext
import org.apache.spark.sql.types._

class DataFramePivotSuite extends QueryTest with SharedSQLContext{
import testImplicits._

test("pivot courses with literals") {
test("pivot courses") {
checkAnswer(
courseSales.groupBy("year").pivot("course", Seq("dotNET", "Java"))
.agg(sum($"earnings")),
Row(2012, 15000.0, 20000.0) :: Row(2013, 48000.0, 30000.0) :: Nil
)
}

test("pivot year with literals") {
test("pivot year") {
checkAnswer(
courseSales.groupBy("course").pivot("year", Seq(2012, 2013)).agg(sum($"earnings")),
Row("dotNET", 15000.0, 48000.0) :: Row("Java", 20000.0, 30000.0) :: Nil
)
}

test("pivot courses with literals and multiple aggregations") {
test("pivot courses with multiple aggregations") {
checkAnswer(
courseSales.groupBy($"year")
.pivot("course", Seq("dotNET", "Java"))
Expand Down Expand Up @@ -94,4 +96,88 @@ class DataFramePivotSuite extends QueryTest with SharedSQLContext{
Row(2012, 15000.0, 20000.0) :: Row(2013, 48000.0, 30000.0) :: Nil
)
}

// Tests for optimized pivot (with PivotFirst) below

test("optimized pivot planned") {
val df = courseSales.groupBy("year")
// pivot with extra columns to trigger optimization
.pivot("course", Seq("dotNET", "Java") ++ (1 to 10).map(_.toString))
.agg(sum($"earnings"))
val queryExecution = sqlContext.executePlan(df.queryExecution.logical)
assert(queryExecution.simpleString.contains("pivotfirst"))
}


test("optimized pivot courses with literals") {
checkAnswer(
courseSales.groupBy("year")
// pivot with extra columns to trigger optimization
.pivot("course", Seq("dotNET", "Java") ++ (1 to 10).map(_.toString))
.agg(sum($"earnings"))
.select("year", "dotNET", "Java"),
Row(2012, 15000.0, 20000.0) :: Row(2013, 48000.0, 30000.0) :: Nil
)
}

test("optimized pivot year with literals") {
checkAnswer(
courseSales.groupBy($"course")
// pivot with extra columns to trigger optimization
.pivot("year", Seq(2012, 2013) ++ (1 to 10))
.agg(sum($"earnings"))
.select("course", "2012", "2013"),
Row("dotNET", 15000.0, 48000.0) :: Row("Java", 20000.0, 30000.0) :: Nil
)
}

test("optimized pivot year with string values (cast)") {
checkAnswer(
courseSales.groupBy("course")
// pivot with extra columns to trigger optimization
.pivot("year", Seq("2012", "2013") ++ (1 to 10).map(_.toString))
.sum("earnings")
.select("course", "2012", "2013"),
Row("dotNET", 15000.0, 48000.0) :: Row("Java", 20000.0, 30000.0) :: Nil
)
}

test("optimized pivot DecimalType") {
val df = courseSales.select($"course", $"year", $"earnings".cast(DecimalType(10, 2)))
.groupBy("year")
// pivot with extra columns to trigger optimization
.pivot("course", Seq("dotNET", "Java") ++ (1 to 10).map(_.toString))
.agg(sum($"earnings"))
.select("year", "dotNET", "Java")

assertResult(IntegerType)(df.schema("year").dataType)
assertResult(DecimalType(20, 2))(df.schema("Java").dataType)
assertResult(DecimalType(20, 2))(df.schema("dotNET").dataType)

checkAnswer(df, Row(2012, BigDecimal(1500000, 2), BigDecimal(2000000, 2)) ::
Row(2013, BigDecimal(4800000, 2), BigDecimal(3000000, 2)) :: Nil)
}

test("PivotFirst supported datatypes") {
val supportedDataTypes: Seq[DataType] = DoubleType :: IntegerType :: LongType :: FloatType ::
BooleanType :: ShortType :: ByteType :: Nil
for (datatype <- supportedDataTypes) {
assertResult(true)(PivotFirst.supportsDataType(datatype))
}
assertResult(true)(PivotFirst.supportsDataType(DecimalType(10, 1)))
assertResult(false)(PivotFirst.supportsDataType(null))
assertResult(false)(PivotFirst.supportsDataType(ArrayType(IntegerType)))
}

test("optimized pivot with multiple aggregations") {
checkAnswer(
courseSales.groupBy($"year")
// pivot with extra columns to trigger optimization
.pivot("course", Seq("dotNET", "Java") ++ (1 to 10).map(_.toString))
.agg(sum($"earnings"), avg($"earnings")),
Row(Seq(2012, 15000.0, 7500.0, 20000.0, 20000.0) ++ Seq.fill(20)(null): _*) ::
Row(Seq(2013, 48000.0, 48000.0, 30000.0, 30000.0) ++ Seq.fill(20)(null): _*) :: Nil
)
}

}

0 comments on commit 9927441

Please sign in to comment.