-
Notifications
You must be signed in to change notification settings - Fork 28.4k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
DB Tsai
committed
Jun 2, 2015
1 parent
15d7c90
commit 9462f5f
Showing
2 changed files
with
307 additions
and
0 deletions.
There are no files selected for viewing
148 changes: 148 additions & 0 deletions
148
examples/src/main/scala/org/apache/spark/examples/ml/LinearRegressionExample.scala
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,148 @@ | ||
/* | ||
* Licensed to the Apache Software Foundation (ASF) under one or more | ||
* contributor license agreements. See the NOTICE file distributed with | ||
* this work for additional information regarding copyright ownership. | ||
* The ASF licenses this file to You under the Apache License, Version 2.0 | ||
* (the "License"); you may not use this file except in compliance with | ||
* the License. You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
|
||
package org.apache.spark.examples.ml | ||
|
||
import scala.collection.mutable | ||
import scala.language.reflectiveCalls | ||
|
||
import scopt.OptionParser | ||
|
||
import org.apache.spark.{SparkConf, SparkContext} | ||
import org.apache.spark.examples.mllib.AbstractParams | ||
import org.apache.spark.ml.{Pipeline, PipelineStage} | ||
import org.apache.spark.ml.regression.{LinearRegression, LinearRegressionModel} | ||
import org.apache.spark.sql.DataFrame | ||
|
||
/** | ||
* An example runner for linear regression with elastic-net (mixing L1/L2) regularization. Run with | ||
* {{{ | ||
* bin/run-example ml.LinearRegressionExample [options] | ||
* }}} | ||
* A synthetic dataset can be found at `data/mllib/sample_linear_regression_data.txt` which can be | ||
* trained by | ||
* {{{ | ||
* bin/run-example ml.LinearRegressionExample --regParam 0.15 --elasticNetParam 1.0 \ | ||
* data/mllib/sample_linear_regression_data.txt | ||
* }}} | ||
* If you use it as a template to create your own app, please use `spark-submit` to submit your app. | ||
*/ | ||
object LinearRegressionExample { | ||
|
||
case class Params( | ||
input: String = null, | ||
testInput: String = "", | ||
dataFormat: String = "libsvm", | ||
regParam: Double = 0.0, | ||
elasticNetParam: Double = 0.0, | ||
maxIter: Int = 100, | ||
tol: Double = 1E-6, | ||
fracTest: Double = 0.2) extends AbstractParams[Params] | ||
|
||
def main(args: Array[String]) { | ||
val defaultParams = Params() | ||
|
||
val parser = new OptionParser[Params]("LinearRegressionExample") { | ||
head("LinearRegressionExample: an example Linear Regression with Elastic-Net app.") | ||
opt[Double]("regParam") | ||
.text(s"regularization parameter, default: ${defaultParams.regParam}") | ||
.action((x, c) => c.copy(regParam = x)) | ||
opt[Double]("elasticNetParam") | ||
.text(s"ElasticNet mixing parameter. For alpha = 0, the penalty is an L2 penalty. " + | ||
s"For alpha = 1, it is an L1 penalty. For 0 < alpha < 1, the penalty is a combination of " + | ||
s"L1 and L2, default: ${defaultParams.elasticNetParam}") | ||
.action((x, c) => c.copy(elasticNetParam = x)) | ||
opt[Int]("maxIter") | ||
.text(s"maximal number of iterations, default: ${defaultParams.maxIter}") | ||
.action((x, c) => c.copy(maxIter = x)) | ||
opt[Double]("tol") | ||
.text(s"the convergence tolerance of iterations, Smaller value will lead " + | ||
s"to higher accuracy with the cost of more iterations, default: ${defaultParams.tol}") | ||
.action((x, c) => c.copy(tol = x)) | ||
opt[Double]("fracTest") | ||
.text(s"fraction of data to hold out for testing. If given option testInput, " + | ||
s"this option is ignored. default: ${defaultParams.fracTest}") | ||
.action((x, c) => c.copy(fracTest = x)) | ||
opt[String]("testInput") | ||
.text(s"input path to test dataset. If given, option fracTest is ignored." + | ||
s" default: ${defaultParams.testInput}") | ||
.action((x, c) => c.copy(testInput = x)) | ||
opt[String]("dataFormat") | ||
.text("data format: libsvm (default), dense (deprecated in Spark v1.1)") | ||
.action((x, c) => c.copy(dataFormat = x)) | ||
arg[String]("<input>") | ||
.text("input path to labeled examples") | ||
.required() | ||
.action((x, c) => c.copy(input = x)) | ||
checkConfig { params => | ||
if (params.fracTest < 0 || params.fracTest >= 1) { | ||
failure(s"fracTest ${params.fracTest} value incorrect; should be in [0,1).") | ||
} else { | ||
success | ||
} | ||
} | ||
} | ||
|
||
parser.parse(args, defaultParams).map { params => | ||
run(params) | ||
}.getOrElse { | ||
sys.exit(1) | ||
} | ||
} | ||
|
||
def run(params: Params) { | ||
val conf = new SparkConf().setAppName(s"LinearRegressionExample with $params") | ||
val sc = new SparkContext(conf) | ||
|
||
println(s"LinearRegressionExample with parameters:\n$params") | ||
|
||
// Load training and test data and cache it. | ||
val (training: DataFrame, test: DataFrame) = DecisionTreeExample.loadDatasets(sc, params.input, | ||
params.dataFormat, params.testInput, "regression", params.fracTest) | ||
|
||
// Set up Pipeline | ||
val stages = new mutable.ArrayBuffer[PipelineStage]() | ||
|
||
val lir = new LinearRegression() | ||
.setFeaturesCol("features") | ||
.setLabelCol("label") | ||
.setRegParam(params.regParam) | ||
.setElasticNetParam(params.elasticNetParam) | ||
.setMaxIter(params.maxIter) | ||
.setTol(params.tol) | ||
|
||
stages += lir | ||
val pipeline = new Pipeline().setStages(stages.toArray) | ||
|
||
// Fit the Pipeline | ||
val startTime = System.nanoTime() | ||
val pipelineModel = pipeline.fit(training) | ||
val elapsedTime = (System.nanoTime() - startTime) / 1e9 | ||
println(s"Training time: $elapsedTime seconds") | ||
|
||
val lirModel = pipelineModel.stages.last.asInstanceOf[LinearRegressionModel] | ||
// Print the weights and intercept for linear regression. | ||
println(s"Weights: ${lirModel.weights} Intercept: ${lirModel.intercept}") | ||
|
||
println("Training data results:") | ||
DecisionTreeExample.evaluateRegressionModel(pipelineModel, training, "label") | ||
println("Test data results:") | ||
DecisionTreeExample.evaluateRegressionModel(pipelineModel, test, "label") | ||
|
||
sc.stop() | ||
} | ||
} |
159 changes: 159 additions & 0 deletions
159
examples/src/main/scala/org/apache/spark/examples/ml/LogisticRegressionExample.scala
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,159 @@ | ||
/* | ||
* Licensed to the Apache Software Foundation (ASF) under one or more | ||
* contributor license agreements. See the NOTICE file distributed with | ||
* this work for additional information regarding copyright ownership. | ||
* The ASF licenses this file to You under the Apache License, Version 2.0 | ||
* (the "License"); you may not use this file except in compliance with | ||
* the License. You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
|
||
package org.apache.spark.examples.ml | ||
|
||
import scala.collection.mutable | ||
import scala.language.reflectiveCalls | ||
|
||
import scopt.OptionParser | ||
|
||
import org.apache.spark.{SparkConf, SparkContext} | ||
import org.apache.spark.examples.mllib.AbstractParams | ||
import org.apache.spark.ml.{Pipeline, PipelineStage} | ||
import org.apache.spark.ml.classification.{LogisticRegression, LogisticRegressionModel} | ||
import org.apache.spark.ml.feature.StringIndexer | ||
import org.apache.spark.sql.DataFrame | ||
|
||
/** | ||
* An example runner for logistic regression with elastic-net (mixing L1/L2) regularization. Run with | ||
* {{{ | ||
* bin/run-example ml.LogisticRegressionExample [options] | ||
* }}} | ||
* A synthetic dataset can be found at `data/mllib/sample_libsvm_data.txt` which can be | ||
* trained by | ||
* {{{ | ||
* bin/run-example ml.LogisticRegressionExample --regParam 0.3 --elasticNetParam 0.8 \ | ||
* data/mllib/sample_libsvm_data.txt | ||
* }}} | ||
* If you use it as a template to create your own app, please use `spark-submit` to submit your app. | ||
*/ | ||
object LogisticRegressionExample { | ||
|
||
case class Params( | ||
input: String = null, | ||
testInput: String = "", | ||
dataFormat: String = "libsvm", | ||
regParam: Double = 0.0, | ||
elasticNetParam: Double = 0.0, | ||
maxIter: Int = 100, | ||
fitIntercept: Boolean = true, | ||
tol: Double = 1E-6, | ||
fracTest: Double = 0.2) extends AbstractParams[Params] | ||
|
||
def main(args: Array[String]) { | ||
val defaultParams = Params() | ||
|
||
val parser = new OptionParser[Params]("LogisticRegressionExample") { | ||
head("LogisticRegressionExample: an example Logistic Regression with Elastic-Net app.") | ||
opt[Double]("regParam") | ||
.text(s"regularization parameter, default: ${defaultParams.regParam}") | ||
.action((x, c) => c.copy(regParam = x)) | ||
opt[Double]("elasticNetParam") | ||
.text(s"ElasticNet mixing parameter. For alpha = 0, the penalty is an L2 penalty. " + | ||
s"For alpha = 1, it is an L1 penalty. For 0 < alpha < 1, the penalty is a combination of " + | ||
s"L1 and L2, default: ${defaultParams.elasticNetParam}") | ||
.action((x, c) => c.copy(elasticNetParam = x)) | ||
opt[Int]("maxIter") | ||
.text(s"maximal number of iterations, default: ${defaultParams.maxIter}") | ||
.action((x, c) => c.copy(maxIter = x)) | ||
opt[Boolean]("fitIntercept") | ||
.text(s"whether to fit an intercept term, default: ${defaultParams.fitIntercept}") | ||
.action((x, c) => c.copy(fitIntercept = x)) | ||
opt[Double]("tol") | ||
.text(s"the convergence tolerance of iterations, Smaller value will lead " + | ||
s"to higher accuracy with the cost of more iterations, default: ${defaultParams.tol}") | ||
.action((x, c) => c.copy(tol = x)) | ||
opt[Double]("fracTest") | ||
.text(s"fraction of data to hold out for testing. If given option testInput, " + | ||
s"this option is ignored. default: ${defaultParams.fracTest}") | ||
.action((x, c) => c.copy(fracTest = x)) | ||
opt[String]("testInput") | ||
.text(s"input path to test dataset. If given, option fracTest is ignored." + | ||
s" default: ${defaultParams.testInput}") | ||
.action((x, c) => c.copy(testInput = x)) | ||
opt[String]("dataFormat") | ||
.text("data format: libsvm (default), dense (deprecated in Spark v1.1)") | ||
.action((x, c) => c.copy(dataFormat = x)) | ||
arg[String]("<input>") | ||
.text("input path to labeled examples") | ||
.required() | ||
.action((x, c) => c.copy(input = x)) | ||
checkConfig { params => | ||
if (params.fracTest < 0 || params.fracTest >= 1) { | ||
failure(s"fracTest ${params.fracTest} value incorrect; should be in [0,1).") | ||
} else { | ||
success | ||
} | ||
} | ||
} | ||
|
||
parser.parse(args, defaultParams).map { params => | ||
run(params) | ||
}.getOrElse { | ||
sys.exit(1) | ||
} | ||
} | ||
|
||
def run(params: Params) { | ||
val conf = new SparkConf().setAppName(s"LogisticRegressionExample with $params") | ||
val sc = new SparkContext(conf) | ||
|
||
println(s"LogisticRegressionExample with parameters:\n$params") | ||
|
||
// Load training and test data and cache it. | ||
val (training: DataFrame, test: DataFrame) = DecisionTreeExample.loadDatasets(sc, params.input, | ||
params.dataFormat, params.testInput, "classification", params.fracTest) | ||
|
||
// Set up Pipeline | ||
val stages = new mutable.ArrayBuffer[PipelineStage]() | ||
|
||
val labelIndexer = new StringIndexer() | ||
.setInputCol("labelString") | ||
.setOutputCol("indexedLabel") | ||
stages += labelIndexer | ||
|
||
val lor = new LogisticRegression() | ||
.setFeaturesCol("features") | ||
.setLabelCol("indexedLabel") | ||
.setRegParam(params.regParam) | ||
.setElasticNetParam(params.elasticNetParam) | ||
.setMaxIter(params.maxIter) | ||
.setTol(params.tol) | ||
.setMaxIter(params.maxIter) | ||
|
||
stages += lor | ||
val pipeline = new Pipeline().setStages(stages.toArray) | ||
|
||
// Fit the Pipeline | ||
val startTime = System.nanoTime() | ||
val pipelineModel = pipeline.fit(training) | ||
val elapsedTime = (System.nanoTime() - startTime) / 1e9 | ||
println(s"Training time: $elapsedTime seconds") | ||
|
||
val lirModel = pipelineModel.stages.last.asInstanceOf[LogisticRegressionModel] | ||
// Print the weights and intercept for logistic regression. | ||
println(s"Weights: ${lirModel.weights} Intercept: ${lirModel.intercept}") | ||
|
||
println("Training data results:") | ||
DecisionTreeExample.evaluateClassificationModel(pipelineModel, training, "indexedLabel") | ||
println("Test data results:") | ||
DecisionTreeExample.evaluateClassificationModel(pipelineModel, test, "indexedLabel") | ||
|
||
sc.stop() | ||
} | ||
} |