Skip to content

Commit

Permalink
[SPARK-15490][R][DOC] SparkR 2.0 QA: New R APIs and API docs for non-…
Browse files Browse the repository at this point in the history
…MLib changes

## What changes were proposed in this pull request?
R Docs changes
include typos, format, layout.
## How was this patch tested?
Test locally.

Author: Kai Jiang <[email protected]>

Closes #13394 from vectorijk/spark-15490.
  • Loading branch information
vectorijk authored and jkbradley committed Jun 17, 2016
1 parent 63470af commit 5fd20b6
Show file tree
Hide file tree
Showing 10 changed files with 123 additions and 88 deletions.
91 changes: 51 additions & 40 deletions R/pkg/R/DataFrame.R
Original file line number Diff line number Diff line change
Expand Up @@ -23,9 +23,11 @@ NULL
setOldClass("jobj")
setOldClass("structType")

#' @title S4 class that represents a SparkDataFrame
#' @description DataFrames can be created using functions like \link{createDataFrame},
#' \link{read.json}, \link{table} etc.
#' S4 class that represents a SparkDataFrame
#'
#' DataFrames can be created using functions like \link{createDataFrame},
#' \link{read.json}, \link{table} etc.
#'
#' @family SparkDataFrame functions
#' @rdname SparkDataFrame
#' @docType class
Expand Down Expand Up @@ -629,8 +631,6 @@ setMethod("repartition",
#'
#' @param x A SparkDataFrame
#' @return A StringRRDD of JSON objects
#' @family SparkDataFrame functions
#' @rdname tojson
#' @noRd
#' @examples
#'\dontrun{
Expand All @@ -648,7 +648,7 @@ setMethod("toJSON",
RDD(jrdd, serializedMode = "string")
})

#' write.json
#' Save the contents of SparkDataFrame as a JSON file
#'
#' Save the contents of a SparkDataFrame as a JSON file (one object per line). Files written out
#' with this method can be read back in as a SparkDataFrame using read.json().
Expand All @@ -675,7 +675,7 @@ setMethod("write.json",
invisible(callJMethod(write, "json", path))
})

#' write.parquet
#' Save the contents of SparkDataFrame as a Parquet file, preserving the schema.
#'
#' Save the contents of a SparkDataFrame as a Parquet file, preserving the schema. Files written out
#' with this method can be read back in as a SparkDataFrame using read.parquet().
Expand Down Expand Up @@ -713,9 +713,9 @@ setMethod("saveAsParquetFile",
write.parquet(x, path)
})

#' write.text
#' Save the content of SparkDataFrame in a text file at the specified path.
#'
#' Saves the content of the SparkDataFrame in a text file at the specified path.
#' Save the content of the SparkDataFrame in a text file at the specified path.
#' The SparkDataFrame must have only one column of string type with the name "value".
#' Each row becomes a new line in the output file.
#'
Expand Down Expand Up @@ -820,8 +820,6 @@ setMethod("sample_frac",
sample(x, withReplacement, fraction, seed)
})

#' nrow
#'
#' Returns the number of rows in a SparkDataFrame
#'
#' @param x A SparkDataFrame
Expand Down Expand Up @@ -874,6 +872,8 @@ setMethod("ncol",
length(columns(x))
})

#' Returns the dimensions of SparkDataFrame
#'
#' Returns the dimensions (number of rows and columns) of a SparkDataFrame
#' @param x a SparkDataFrame
#'
Expand Down Expand Up @@ -2012,8 +2012,9 @@ setMethod("join",
dataFrame(sdf)
})

#' Merges two data frames
#'
#' @name merge
#' @title Merges two data frames
#' @param x the first data frame to be joined
#' @param y the second data frame to be joined
#' @param by a character vector specifying the join columns. If by is not
Expand Down Expand Up @@ -2127,7 +2128,6 @@ setMethod("merge",
joinRes
})

#'
#' Creates a list of columns by replacing the intersected ones with aliases.
#' The name of the alias column is formed by concatanating the original column name and a suffix.
#'
Expand Down Expand Up @@ -2182,8 +2182,9 @@ setMethod("unionAll",
dataFrame(unioned)
})

#' @title Union two or more SparkDataFrames
#' @description Returns a new SparkDataFrame containing rows of all parameters.
#' Union two or more SparkDataFrames
#'
#' Returns a new SparkDataFrame containing rows of all parameters.
#'
#' @rdname rbind
#' @name rbind
Expand Down Expand Up @@ -2254,20 +2255,22 @@ setMethod("except",
dataFrame(excepted)
})

#' Save the contents of the SparkDataFrame to a data source
#' Save the contents of SparkDataFrame to a data source.
#'
#' The data source is specified by the `source` and a set of options (...).
#' If `source` is not specified, the default data source configured by
#' spark.sql.sources.default will be used.
#'
#' Additionally, mode is used to specify the behavior of the save operation when
#' data already exists in the data source. There are four modes: \cr
#' append: Contents of this SparkDataFrame are expected to be appended to existing data. \cr
#' overwrite: Existing data is expected to be overwritten by the contents of this
#' SparkDataFrame. \cr
#' error: An exception is expected to be thrown. \cr
#' ignore: The save operation is expected to not save the contents of the SparkDataFrame
#' and to not change the existing data. \cr
#' Additionally, mode is used to specify the behavior of the save operation when data already
#' exists in the data source. There are four modes:
#' \itemize{
#' \item append: Contents of this SparkDataFrame are expected to be appended to existing data.
#' \item overwrite: Existing data is expected to be overwritten by the contents of this
#' SparkDataFrame.
#' \item error: An exception is expected to be thrown.
#' \item ignore: The save operation is expected to not save the contents of the SparkDataFrame
#' and to not change the existing data.
#' }
#'
#' @param df A SparkDataFrame
#' @param path A name for the table
Expand Down Expand Up @@ -2315,8 +2318,6 @@ setMethod("saveDF",
write.df(df, path, source, mode, ...)
})

#' saveAsTable
#'
#' Save the contents of the SparkDataFrame to a data source as a table
#'
#' The data source is specified by the `source` and a set of options (...).
Expand Down Expand Up @@ -2543,11 +2544,12 @@ setMethod("fillna",
dataFrame(sdf)
})

#' Download data from a SparkDataFrame into a data.frame
#'
#' This function downloads the contents of a SparkDataFrame into an R's data.frame.
#' Since data.frames are held in memory, ensure that you have enough memory
#' in your system to accommodate the contents.
#'
#' @title Download data from a SparkDataFrame into a data.frame
#' @param x a SparkDataFrame
#' @return a data.frame
#' @family SparkDataFrame functions
Expand All @@ -2563,13 +2565,14 @@ setMethod("as.data.frame",
as.data.frame(collect(x), row.names, optional, ...)
})

#' Attach SparkDataFrame to R search path
#'
#' The specified SparkDataFrame is attached to the R search path. This means that
#' the SparkDataFrame is searched by R when evaluating a variable, so columns in
#' the SparkDataFrame can be accessed by simply giving their names.
#'
#' @family SparkDataFrame functions
#' @rdname attach
#' @title Attach SparkDataFrame to R search path
#' @param what (SparkDataFrame) The SparkDataFrame to attach
#' @param pos (integer) Specify position in search() where to attach.
#' @param name (character) Name to use for the attached SparkDataFrame. Names
Expand All @@ -2589,14 +2592,16 @@ setMethod("attach",
attach(newEnv, pos = pos, name = name, warn.conflicts = warn.conflicts)
})

#' Evaluate a R expression in an environment constructed from a SparkDataFrame
#'
#' Evaluate a R expression in an environment constructed from a SparkDataFrame
#' with() allows access to columns of a SparkDataFrame by simply referring to
#' their name. It appends every column of a SparkDataFrame into a new
#' environment. Then, the given expression is evaluated in this new
#' environment.
#'
#' @rdname with
#' @title Evaluate a R expression in an environment constructed from a SparkDataFrame
#' @family SparkDataFrame functions
#' @param data (SparkDataFrame) SparkDataFrame to use for constructing an environment.
#' @param expr (expression) Expression to evaluate.
#' @param ... arguments to be passed to future methods.
Expand All @@ -2612,10 +2617,12 @@ setMethod("with",
eval(substitute(expr), envir = newEnv, enclos = newEnv)
})

#' Compactly display the structure of a dataset
#'
#' Display the structure of a SparkDataFrame, including column names, column types, as well as a
#' a small sample of rows.
#'
#' @name str
#' @title Compactly display the structure of a dataset
#' @rdname str
#' @family SparkDataFrame functions
#' @param object a SparkDataFrame
Expand Down Expand Up @@ -2728,10 +2735,11 @@ setMethod("drop",
base::drop(x)
})

#' Compute histogram statistics for given column
#'
#' This function computes a histogram for a given SparkR Column.
#'
#' @name histogram
#' @title Histogram
#' @param nbins the number of bins (optional). Default value is 10.
#' @param df the SparkDataFrame containing the Column to build the histogram from.
#' @param colname the name of the column to build the histogram from.
Expand Down Expand Up @@ -2847,18 +2855,21 @@ setMethod("histogram",
return(histStats)
})

#' Saves the content of the SparkDataFrame to an external database table via JDBC
#' Save the content of SparkDataFrame to an external database table via JDBC.
#'
#' Additional JDBC database connection properties can be set (...)
#' Save the content of the SparkDataFrame to an external database table via JDBC. Additional JDBC
#' database connection properties can be set (...)
#'
#' Also, mode is used to specify the behavior of the save operation when
#' data already exists in the data source. There are four modes: \cr
#' append: Contents of this SparkDataFrame are expected to be appended to existing data. \cr
#' overwrite: Existing data is expected to be overwritten by the contents of this
#' SparkDataFrame. \cr
#' error: An exception is expected to be thrown. \cr
#' ignore: The save operation is expected to not save the contents of the SparkDataFrame
#' and to not change the existing data. \cr
#' data already exists in the data source. There are four modes:
#' \itemize{
#' \item append: Contents of this SparkDataFrame are expected to be appended to existing data.
#' \item overwrite: Existing data is expected to be overwritten by the contents of this
#' SparkDataFrame.
#' \item error: An exception is expected to be thrown.
#' \item ignore: The save operation is expected to not save the contents of the SparkDataFrame
#' and to not change the existing data.
#' }
#'
#' @param x A SparkDataFrame
#' @param url JDBC database url of the form `jdbc:subprotocol:subname`
Expand Down
14 changes: 8 additions & 6 deletions R/pkg/R/RDD.R
Original file line number Diff line number Diff line change
Expand Up @@ -19,9 +19,11 @@

setOldClass("jobj")

#' @title S4 class that represents an RDD
#' @description RDD can be created using functions like
#' S4 class that represents an RDD
#'
#' RDD can be created using functions like
#' \code{parallelize}, \code{textFile} etc.
#'
#' @rdname RDD
#' @seealso parallelize, textFile
#' @slot env An R environment that stores bookkeeping states of the RDD
Expand Down Expand Up @@ -497,9 +499,9 @@ setMethod("map",
lapply(X, FUN)
})

#' Flatten results after apply a function to all elements
#' Flatten results after applying a function to all elements
#'
#' This function return a new RDD by first applying a function to all
#' This function returns a new RDD by first applying a function to all
#' elements of this RDD, and then flattening the results.
#'
#' @param X The RDD to apply the transformation.
Expand Down Expand Up @@ -713,7 +715,7 @@ setMethod("sumRDD",
reduce(x, "+")
})

#' Applies a function to all elements in an RDD, and force evaluation.
#' Applies a function to all elements in an RDD, and forces evaluation.
#'
#' @param x The RDD to apply the function
#' @param func The function to be applied.
Expand All @@ -737,7 +739,7 @@ setMethod("foreach",
invisible(collect(mapPartitions(x, partition.func)))
})

#' Applies a function to each partition in an RDD, and force evaluation.
#' Applies a function to each partition in an RDD, and forces evaluation.
#'
#' @examples
#'\dontrun{
Expand Down
7 changes: 4 additions & 3 deletions R/pkg/R/WindowSpec.R
Original file line number Diff line number Diff line change
Expand Up @@ -20,9 +20,10 @@
#' @include generics.R jobj.R column.R
NULL

#' @title S4 class that represents a WindowSpec
#' @description WindowSpec can be created by using window.partitionBy()
#' or window.orderBy()
#' S4 class that represents a WindowSpec
#'
#' WindowSpec can be created by using window.partitionBy() or window.orderBy()
#'
#' @rdname WindowSpec
#' @seealso \link{window.partitionBy}, \link{window.orderBy}
#'
Expand Down
8 changes: 5 additions & 3 deletions R/pkg/R/broadcast.R
Original file line number Diff line number Diff line change
Expand Up @@ -23,9 +23,11 @@
.broadcastValues <- new.env()
.broadcastIdToName <- new.env()

# @title S4 class that represents a Broadcast variable
# @description Broadcast variables can be created using the broadcast
# function from a \code{SparkContext}.
# S4 class that represents a Broadcast variable
#
# Broadcast variables can be created using the broadcast
# function from a \code{SparkContext}.
#
# @rdname broadcast-class
# @seealso broadcast
#
Expand Down
6 changes: 4 additions & 2 deletions R/pkg/R/column.R
Original file line number Diff line number Diff line change
Expand Up @@ -22,8 +22,10 @@ NULL

setOldClass("jobj")

#' @title S4 class that represents a SparkDataFrame column
#' @description The column class supports unary, binary operations on SparkDataFrame columns
#' S4 class that represents a SparkDataFrame column
#'
#' The column class supports unary, binary operations on SparkDataFrame columns
#'
#' @rdname column
#'
#' @slot jc reference to JVM SparkDataFrame column
Expand Down
Loading

0 comments on commit 5fd20b6

Please sign in to comment.