Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

Remove identity operators from oneDNN optimized graph #20712

Merged
merged 5 commits into from
Dec 2, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
168 changes: 168 additions & 0 deletions src/operator/subgraph/dnnl/dnnl_identity_property.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,168 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/

/*!
* \file dnnl_identity_property.cc
* \brief Graph property for removing identity operators
*/

#ifndef MXNET_OPERATOR_SUBGRAPH_DNNL_DNNL_IDENTITY_PROPERTY_H_
#define MXNET_OPERATOR_SUBGRAPH_DNNL_DNNL_IDENTITY_PROPERTY_H_
#if MXNET_USE_ONEDNN == 1

#include <map>
#include <string>
#include <vector>

#include "../common.h"
#include "../../nn/dropout-inl.h"
#include "dnnl_subgraph_base-inl.h"

namespace mxnet {
namespace op {

class SgDNNLIdentitySelector : public SubgraphSelectorV2 {
private:
std::vector<const BiDirectedNode*> matched_list_;

public:
bool Select(const BiDirectedNode& seed_node,
const std::shared_ptr<NodeAttr>& node_attr) override {
bool status = false;
if (seed_node.node->op() == Op::Get("_npi_copy")) {
status = true;
}

if (seed_node.node->op() == Op::Get("Dropout")) {
auto const& dropout_param = nnvm::get<DropoutParam>(seed_node.node->attrs.parsed);
if (dropout_param.mode == dropout::kTraining) {
status = true;
}
}

if (status) {
matched_list_.clear();
matched_list_.emplace_back(&seed_node);
return true;
}
return false;
}

bool SelectInput(const BiDirectedNode& n, const BiDirectedNode& input_node) override {
if (input_node.node->is_variable()) {
return false;
} else if (input_node.node->op()) {
matched_list_.emplace_back(&input_node);
return true;
}
return false;
}

bool SelectOutput(const BiDirectedNode& n, const BiDirectedNode& output_node) override {
return false;
}

std::vector<BiDirectedNode*> Filter(const std::vector<BiDirectedNode*>& candidates) override {
// candidates should contain only two nodes - custom node and identity node
if (candidates.size() == 2 && candidates.size() == matched_list_.size()) {
return candidates;
} else {
return std::vector<BiDirectedNode*>(0);
}
}

void Reset() override {
CHECK_GE(matched_list_.size(), 1);
auto new_selector = SgDNNLIdentitySelector();
new_selector.Select(*matched_list_[0], nullptr);
*this = new_selector;
}
};

inline bool IsIdentityNode(const nnvm::ObjectPtr node) {
return node->op() && (node->op() == Op::Get("_npi_copy") || node->op() == Op::Get("Dropout"));
}

class SgDNNLIdentityProperty : public SubgraphProperty {
public:
SgDNNLIdentityProperty() {}

static SubgraphPropertyPtr Create() {
static const std::string& name = "DNNL Identity optimization pass";
auto property = std::make_shared<SgDNNLIdentityProperty>();
property->SetAttr<std::string>("property_name", name);
property->SetAttr<bool>("inference_only", true);
return property;
}

nnvm::ObjectPtr CreateSubgraphNode(const nnvm::Symbol& sym,
const int subgraph_id = 0) const override {
nnvm::NodeEntry identity_node_entry;
for (auto entry : sym.outputs) {
if (IsIdentityNode(entry.node)) {
identity_node_entry = entry;
}
}

auto last_node = identity_node_entry.node;
nnvm::Symbol new_sym;
new_sym.outputs.emplace_back(last_node);

nnvm::ObjectPtr org_node;
DFSVisit(new_sym.outputs, [&](const nnvm::ObjectPtr& node) {
if (!IsIdentityNode(node)) {
org_node = node;
}
});

// Create copy of original node
nnvm::ObjectPtr n = nnvm::Node::Create();
n->attrs = org_node->attrs;
CHECK(n->op());
n->op()->attr_parser(&(n->attrs));
return n;
}

void ConnectSubgraphOutputs(const nnvm::ObjectPtr n,
std::vector<nnvm::NodeEntry*>* output_entries) const override {
// output of identity must be connected as output of operator before identity
// e.g. for: /--index 0--> custom_op
// (n) slice
// \--index 1--> Dropout --index 0--> OUT_NODE
// for OUT_NODE index 0 must be changed to index 1
for (int i = 0; i < output_entries->size(); ++i) {
auto out_node = output_entries->at(i)->node;
if (IsIdentityNode(out_node)) {
output_entries->at(i)->index = out_node->inputs[0].index;
}
output_entries->at(i)->node = n;
}
}

SubgraphSelectorV2Ptr CreateSubgraphSelectorV2() const override {
auto selector = std::make_shared<SgDNNLIdentitySelector>();
return selector;
}
};

} // namespace op
} // namespace mxnet

#endif // if MXNET_USE_ONEDNN == 1
#endif // MXNET_OPERATOR_SUBGRAPH_DNNL_DNNL_IDENTITY_PROPERTY_H_
2 changes: 1 addition & 1 deletion src/operator/subgraph/dnnl/dnnl_subgraph_base-inl.h
Original file line number Diff line number Diff line change
Expand Up @@ -31,7 +31,7 @@ static inline bool SupportDNNLAttr(const std::shared_ptr<NodeAttr>& node_attr) {
return (node_attr->dispatch_mode == DispatchMode::kFComputeEx) &&
(node_attr->itype[0] == mshadow::kFloat32 ||
node_attr->itype[0] == mshadow::kBfloat16) &&
(ndim == 1 || ndim == 2 || ndim == 4 || ndim == 5);
(ndim >= 1 && ndim <= 5);
bgawrych marked this conversation as resolved.
Show resolved Hide resolved
} else {
return true;
}
Expand Down
3 changes: 3 additions & 0 deletions src/operator/subgraph/dnnl/dnnl_subgraph_property.cc
Original file line number Diff line number Diff line change
Expand Up @@ -23,6 +23,7 @@
#include "dnnl_bn_relu_property.h"
#include "dnnl_conv_property.h"
#include "dnnl_fc_property.h"
#include "dnnl_identity_property.h"
#include "dnnl_post_quantize_align_scale_property.h"
#include "dnnl_post_quantize_property.h"
#include "dnnl_transformer_qk_property.h"
Expand All @@ -35,6 +36,7 @@ MXNET_REGISTER_SUBGRAPH_BACKEND(ONEDNN)
.set_attr("enable", DNNLEnvSet())
.set_attr("context", Context::CPU());

MXNET_REGISTER_SUBGRAPH_PROPERTY(ONEDNN, SgDNNLIdentityProperty);
MXNET_REGISTER_SUBGRAPH_PROPERTY(ONEDNN, SgDNNLConvProperty);
MXNET_REGISTER_SUBGRAPH_PROPERTY(ONEDNN, SgDNNLFCProperty);
MXNET_REGISTER_SUBGRAPH_PROPERTY(ONEDNN, SgDNNLBNReLUProperty);
Expand All @@ -44,6 +46,7 @@ MXNET_REGISTER_SUBGRAPH_PROPERTY(ONEDNN, SgDNNLBatchDotProperty);

MXNET_REGISTER_SUBGRAPH_BACKEND(ONEDNN_QUANTIZE).set_attr("context", Context::CPU());

MXNET_REGISTER_SUBGRAPH_PROPERTY(ONEDNN_QUANTIZE, SgDNNLIdentityProperty);
MXNET_REGISTER_SUBGRAPH_PROPERTY(ONEDNN_QUANTIZE, SgDNNLConvProperty).set_attr("quantize", true);
MXNET_REGISTER_SUBGRAPH_PROPERTY(ONEDNN_QUANTIZE, SgDNNLFCProperty).set_attr("quantize", true);
MXNET_REGISTER_SUBGRAPH_PROPERTY(ONEDNN_QUANTIZE, SgDNNLTransformerQKProperty);
Expand Down
23 changes: 23 additions & 0 deletions tests/python/dnnl/subgraphs/test_fc_subgraph.py
Original file line number Diff line number Diff line change
Expand Up @@ -200,3 +200,26 @@ def forward(self, x):
attrs = {'fc': {}}
net = MultiOutputFC()
check_fusion(net, data_shape, attrs, check_quantization=flatten)


@mx.util.use_np
@pytest.mark.parametrize('identity_node', ['dropout', 'copy'])
def test_fc_identity_eltwise(identity_node):
class FCIdentityEltwise(nn.HybridBlock):
def __init__(self, identity_node, **kwargs):
super(FCIdentityEltwise, self).__init__(**kwargs)
self.fc = nn.Dense(units=64, use_bias=False, weight_initializer=None, flatten=True)
self.identity_node = identity_node
def forward(self, x):
fc_out = self.fc(x)
if self.identity_node == 'copy':
fc_out = mx.np.copy(fc_out)
else:
fc_out = mx.npx.dropout(fc_out)
out = mx.npx.activation(fc_out, act_type='relu')
return out

data_shape = (64, 4, 10, 10)
attrs = {'fc': {'with_eltwise': 'true'}}
net = FCIdentityEltwise(identity_node)
check_fusion(net, data_shape, attrs, check_quantization=False)
bgawrych marked this conversation as resolved.
Show resolved Hide resolved