Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

[master] [LICENSE] modify erfinv implementation based on scipy (backport #20517) #20550

Merged
merged 1 commit into from
Aug 25, 2021
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
359 changes: 286 additions & 73 deletions src/operator/contrib/erfinv-inl.h
Original file line number Diff line number Diff line change
@@ -1,49 +1,49 @@
/*
* Copyright (c) 2014 Indiana University
* Copyright (c) 2001-2002 Enthought, Inc. 2003-2019, SciPy Developers.
* All rights reserved.
* Written by Prof. Gary L. Pavlis, Dept. of Geol. Sci.,
* Indiana University, Bloomington, IN
* This software is licensed under the New BSD license:
* Redistribution and use in source and binary forms,
* with or without modification, are permitted provided
* that the following conditions are met:
* Redistributions of source code must retain the above
* copyright notice, this list of conditions and the
* following disclaimer.
* Redistributions in binary form must reproduce the
* above copyright notice, this list of conditions and
* the following disclaimer in the documentation and/or
* other materials provided with the distribution.
* Neither the name of Indiana University nor
* the names of its contributors may be used to endorse
* or promote products derived from this software without
* specific prior written permission.
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
* CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
* THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
* IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
* USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
*
* * Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/

/*
* The next function is taken from
* https://github.com/antelopeusersgroup/antelope_contrib/blob/master/lib/location/libgenloc/erfinv.c.
* Output was modified to be inf or -inf when input is 1 or -1.
* The functions in this file are taken from
* https://github.com/scipy/scipy/blob/master/scipy/special/cephes/polevl.h
* https://github.com/scipy/scipy/blob/master/scipy/special/cephes/ndtri.c
* https://github.com/scipy/scipy/blob/master/scipy/special/cephes/erfinv.c
*/

#ifndef MXNET_OPERATOR_CONTRIB_ERFINV_INL_H_
#define MXNET_OPERATOR_CONTRIB_ERFINV_INL_H_

#define _USE_MATH_DEFINES

#include <assert.h>
#include <mxnet/base.h>
#include <limits>
#include "math.h"
Expand All @@ -52,49 +52,262 @@ namespace mxnet {
namespace op {
namespace mshadow_op {

/*! \brief inverse gauss error function */

/*
* Evaluate polynomial
*
*
*
* SYNOPSIS:
*
* int N;
* double x, y, coef[N+1], polevl[];
*
* y = polevl( x, coef, N );
*
*
*
* DESCRIPTION:
*
* Evaluates polynomial of degree N:
*
* 2 N
* y = C + C x + C x +...+ C x
* 0 1 2 N
*
* Coefficients are stored in reverse order:
*
* coef[0] = C , ..., coef[N] = C .
* N 0
*
* The function p1evl() assumes that coef[N] = 1.0 and is
* omitted from the array. Its calling arguments are
* otherwise the same as polevl().
*
*
* SPEED:
*
* In the interest of speed, there are no checks for out
* of bounds arithmetic. This routine is used by most of
* the functions in the library. Depending on available
* equipment features, the user may wish to rewrite the
* program in microcode or assembly language.
*
*/

MSHADOW_XINLINE static double polevl(double x, const double coef[], int N) {
const double *p;
double ans;
int i;

p = coef;
ans = *p++;
i = N;

do {
ans = ans * x + *p++;
} while (--i);

return (ans);
}

MSHADOW_XINLINE static double p1evl(double x, const double coef[], int N) {
const double *p;
double ans;
int i;

p = coef;
ans = x + *p++;
i = N - 1;

do {
ans = ans * x + *p++;
} while (--i);

return (ans);
}


/* Inverse of Normal distribution function
*
* SYNOPSIS:
*
* double x, y, ndtri();
*
* x = ndtri( y );
*
* domain: 0 < y < 1
*
*
*
* DESCRIPTION:
*
* Returns the argument, x, for which the area under the
* Gaussian probability density function (integrated from
* minus infinity to x) is equal to y.
*
*
* For small arguments 0 < y < exp(-2), the program computes
* z = sqrt( -2.0 * log(y) ); then the approximation is
* x = z - log(z)/z - (1/z) P(1/z) / Q(1/z).
* There are two rational functions P/Q, one for 0 < y < exp(-32)
* and the other for y up to exp(-2). For larger arguments,
* w = y - 0.5, and x/sqrt(2pi) = w + w**3 R(w**2)/S(w**2)).
*
*
* ACCURACY:
*
* Relative error:
* arithmetic domain # trials peak rms
* IEEE 0.125, 1 20000 7.2e-16 1.3e-16
* IEEE 3e-308, 0.135 50000 4.6e-16 9.8e-17
*
*/

MSHADOW_XINLINE static double ndtri(double y0) {
assert(y0 > 0 && y0 < 1);

/* sqrt(2pi) */
double s2pi = 2.50662827463100050242E0;

/* approximation for 0 <= |y - 0.5| <= 3/8 */
double P0[5] = {
-5.99633501014107895267E1,
9.80010754185999661536E1,
-5.66762857469070293439E1,
1.39312609387279679503E1,
-1.23916583867381258016E0,
};
double Q0[8] = {
/* 1.00000000000000000000E0, */
1.95448858338141759834E0,
4.67627912898881538453E0,
8.63602421390890590575E1,
-2.25462687854119370527E2,
2.00260212380060660359E2,
-8.20372256168333339912E1,
1.59056225126211695515E1,
-1.18331621121330003142E0,
};

/* Approximation for interval z = sqrt(-2 log y ) between 2 and 8
* i.e., y between exp(-2) = .135 and exp(-32) = 1.27e-14.
*/
double P1[9] = {
4.05544892305962419923E0,
3.15251094599893866154E1,
5.71628192246421288162E1,
4.40805073893200834700E1,
1.46849561928858024014E1,
2.18663306850790267539E0,
-1.40256079171354495875E-1,
-3.50424626827848203418E-2,
-8.57456785154685413611E-4,
};
double Q1[8] = {
/* 1.00000000000000000000E0, */
1.57799883256466749731E1,
4.53907635128879210584E1,
4.13172038254672030440E1,
1.50425385692907503408E1,
2.50464946208309415979E0,
-1.42182922854787788574E-1,
-3.80806407691578277194E-2,
-9.33259480895457427372E-4,
};

/* Approximation for interval z = sqrt(-2 log y ) between 8 and 64
* i.e., y between exp(-32) = 1.27e-14 and exp(-2048) = 3.67e-890.
*/
double P2[9] = {
3.23774891776946035970E0,
6.91522889068984211695E0,
3.93881025292474443415E0,
1.33303460815807542389E0,
2.01485389549179081538E-1,
1.23716634817820021358E-2,
3.01581553508235416007E-4,
2.65806974686737550832E-6,
6.23974539184983293730E-9,
};
double Q2[8] = {
/* 1.00000000000000000000E0, */
6.02427039364742014255E0,
3.67983563856160859403E0,
1.37702099489081330271E0,
2.16236993594496635890E-1,
1.34204006088543189037E-2,
3.28014464682127739104E-4,
2.89247864745380683936E-6,
6.79019408009981274425E-9,
};

double x, y, z, y2, x0, x1;
bool code = true;
y = y0;
if (y > (1.0 - 0.13533528323661269189)) { /* 0.135... = exp(-2) */
y = 1.0 - y;
code = false;
}

if (y > 0.13533528323661269189) {
y = y - 0.5;
y2 = y * y;
x = y + y * (y2 * polevl(y2, P0, 4) / p1evl(y2, Q0, 8));
x = x * s2pi;
return (x);
}

x = sqrt(-2.0 * log(y));
x0 = x - log(x) / x;

z = 1.0 / x;
if (x < 8.0) { /* y > exp(-32) = 1.2664165549e-14 */
x1 = z * polevl(z, P1, 8) / p1evl(z, Q1, 8);
} else {
x1 = z * polevl(z, P2, 8) / p1evl(z, Q2, 8);
}

x = x0 - x1;
if (code) {
x = -x;
}
return (x);
}


/*! \brief inverse of the error function */
struct erfinv : public mxnet_op::tunable {
template<typename DType>
MSHADOW_XINLINE static DType Map(DType v) {
/* Function to calculate inverse error function. Rational approximation
is used to generate an initial approximation, which is then improved to
full accuracy by two steps of Newton's method. Code is a direct
translation of the erfinv m file in matlab version 2.0.
Author: Gary L. Pavlis, Indiana University
Date: February 1996
*/
const double central_range = 0.7;
/* Inverse of the error function.
* Computes the inverse of the error function on the restricted domain
* -1 < y < 1. This restriction ensures the existence of a unique result
* such that erf(erfinv(y)) = y.
*/
const double domain_lb = -1;
const double domain_ub = 1;

const double thresh = 1e-7;
double y = static_cast<double>(v);
double y_fab = std::fabs(y);
/*working variables */
double x = 0.0;
double z, num, dem;
/* coefficients in rational expansion */
double a[4]={ 0.886226899, -1.645349621, 0.914624893, -0.140543331};
double b[4]={-2.118377725, 1.442710462, -0.329097515, 0.012229801};
double c[4]={-1.970840454, -1.624906493, 3.429567803, 1.641345311};
double d[2]={ 3.543889200, 1.637067800};
if (y_fab > 1.0) {
/* This needs IEEE constant*/
return DType(std::numeric_limits<double>::quiet_NaN());
} else if (y_fab == 1.0) {
return DType((std::copysign(1.0, y))*std::numeric_limits<double>::infinity());
} else if (y_fab <= central_range) {
z = y*y;
num = (((a[3]*z + a[2])*z + a[1])*z + a[0]);
dem = ((((b[3]*z + b[2])*z + b[1])*z +b[0])*z + 1.0);
x = y*num/dem;
} else {
z = std::sqrt(-std::log((1.0-y_fab)/2.0));
num = ((c[3]*z + c[2])*z + c[1])*z + c[0];
dem = (d[1]*z + d[0])*z + 1.0;
x = (std::copysign(1.0, y))*num/dem;

/*
* For small arguments, use the Taylor expansion
* erf(y) = 2/\sqrt{\pi} (y - y^3 / 3 + O(y^5)), y\to 0
* where we only retain the linear term.
* Otherwise, y + 1 loses precision for |y| << 1.
*/
if ((-thresh < y) && (y < thresh)) {
return DType(y / M_2_SQRTPI);
}
/* Two steps of Newton-Raphson correction */
x = x - (std::erf(x) - y)/((2.0/std::sqrt(M_PI))*std::exp(-x*x));
x = x - (std::erf(x) - y)/((2.0/std::sqrt(M_PI))*std::exp(-x*x));

return DType(x);
if ((domain_lb < y) && (y < domain_ub)) {
return DType(ndtri(0.5 * (y+1)) * M_SQRT1_2);
} else if (y == domain_lb || y == domain_ub) {
return DType(std::copysign(1.0, y) * std::numeric_limits<double>::infinity());
} else {
return DType(std::numeric_limits<double>::quiet_NaN());
}
}
};

Expand Down