Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

[v1.x] ONNX support for _split_v2 #20250

Merged
merged 4 commits into from
May 6, 2021
Merged
Show file tree
Hide file tree
Changes from 3 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -4440,6 +4440,7 @@ def convert_sequence_reverse(node, **kwargs):

return nodes


@mx_op.register("RNN")
def convert_RNN(node, **kwargs):
"""Map MXNet's RNN operator attributes to onnx's operators
Expand Down Expand Up @@ -4810,6 +4811,7 @@ def convert_RNN(node, **kwargs):
raise NotImplementedError(f"Currently RNN onnx export does not support {mode} mode")
return nodes


@mx_op.register('_rnn_param_concat')
def convert_rnn_param_concat(node, **kwargs):
"""Map MXNet's _rnn_param_concat operator
Expand Down Expand Up @@ -4852,3 +4854,36 @@ def convert_contrib_div_sqrt_dim(node, **kwargs):
]

return nodes


@mx_op.register('_split_v2')
def convert_contrib_split_v2(node, **kwargs):
"""Map MXNet's _split_v2 operator
"""
from onnx.helper import make_node
name, input_nodes, attrs = get_inputs(node, kwargs)
axis = int(attrs.get('axis', 0))
squeeze_axis = attrs.get('squeeze_axis', 'False')
sections = int(attrs.get('sections', 0))
indices = convert_string_to_list(attrs.get('indices', '[]'))
if sections <= 0 and len(indices) == 0:
raise NotImplementedError('section or indices must be set')
if sections > 0:
output_nodes = [name+str(i) for i in range(sections)]
if squeeze_axis == 'False':
nodes = [
make_node('Split', input_nodes, output_nodes, axis=axis),
]
else:
output_nodes_ = [name+str(i)+'_' for i in range(sections)]
nodes = [
make_node('Split', input_nodes, output_nodes_, axis=axis),
]
for i in range(sections):
nodes += [
make_node("Squeeze", [output_nodes_[i]], [output_nodes[i]], axes=[axis]),
]
else:
raise NotImplementedError('indices is supported since ONNX 1.8.0 (opset13), please upgrade ONNX version')

return nodes
Original file line number Diff line number Diff line change
Expand Up @@ -136,7 +136,6 @@ def get_inputs(node, kwargs):
outputs_lookup = kwargs["outputs_lookup"]
inputs = node["inputs"]
attrs = node.get("attrs", {})

input_nodes = []
for ip in inputs:
input_node_name = outputs_lookup[ip[0]][ip[1]].name
Expand Down Expand Up @@ -1732,3 +1731,69 @@ def convert_logsoftmax(node, **kwargs):
)

return [node]


@mx_op.register('_split_v2', OPSET_VERSION)
def convert_contrib_split_v2(node, **kwargs):
"""Map MXNet's _split_v2 operator
"""
from onnx.helper import make_node
name, input_nodes, attrs = get_inputs(node, kwargs)
axis = int(attrs.get('axis', 0))
squeeze_axis = attrs.get('squeeze_axis', 'False')
sections = int(attrs.get('sections', 0))
indices = convert_string_to_list(attrs.get('indices', '[]'))
if sections <= 0 and len(indices) == 0:
raise NotImplementedError('section or indices must be set')
if sections > 0:
output_nodes = [name+str(i) for i in range(sections)]
if squeeze_axis == 'False':
nodes = [
make_node('Split', input_nodes, output_nodes, axis=axis),
]
else:
output_nodes_ = [name+str(i)+'_' for i in range(sections)]
create_tensor([axis], name+'_axis', kwargs['initializer'])
nodes = [
make_node('Split', input_nodes, output_nodes_, axis=axis),
]
for i in range(sections):
nodes += [
make_node("Squeeze", [output_nodes_[i], name+'_axis'], [output_nodes[i]]),
]
else:
indices.sort()
split = []
for i in range(1, len(indices)):
if indices[i] >= indices[i-1]:
split.append(indices[i] - indices[i-1])

output_nodes = [name+str(i) for i in range(len(split)+1)]
create_tensor([0], name+'_0', kwargs['initializer'])
create_tensor([axis], name+'_axis', kwargs['initializer'])
create_tensor([axis+1], name+'_axis+1', kwargs['initializer'])
create_tensor(split, name+'_split_', kwargs['initializer'])
create_tensor([sum(split)], name+'_sum', kwargs['initializer'])
nodes = [
make_node('Shape', input_nodes, [name+'_shape']),
make_node('Slice', [name+'_shape', name+'_axis', name+'_axis+1', name+'_0'], [name+'_dim']),
make_node('Sub', [name+'_dim', name+'_sum'], [name+'_sub']),
make_node('Concat', [name+'_split_', name+'_sub'], [name+'_concat'], axis=0),
make_node('Less', [name+'_concat', name+'_0'], [name+'_less']),
make_node('Where', [name+'_less', name+'_0', name+'_concat'], [name+'_split']),
]
if squeeze_axis == 'False':
nodes += [
make_node('Split', [input_nodes[0], name+'_split'], output_nodes, axis=axis),
]
else:
output_nodes_ = [name+str(i)+'_' for i in range(len(split)+1)]
nodes += [
make_node('Split', [input_nodes[0], name+'_split'], output_nodes_, axis=axis),
]
for i in range(len(output_nodes)):
nodes += [
make_node("Squeeze", [output_nodes_[i], name+'_axis'], [output_nodes[i]]),
]

return nodes
16 changes: 16 additions & 0 deletions tests/python-pytest/onnx/test_operators.py
Original file line number Diff line number Diff line change
Expand Up @@ -1858,3 +1858,19 @@ def rand_check(out):
def rand_check_nd(out):
return rand_check(out.asnumpy())
op_export_test('sample_multinomial', M, [x], tmp_path, mx_map=rand_check_nd, onnx_map=rand_check)


@pytest.mark.parametrize("dtype", ['float32', 'int32', 'int64'])
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Is the customer use case covered by the unit tests?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Customer has not shared their use case yet

@pytest.mark.parametrize('params', [((2, 4, 6), (1, ), 0, True),
((4, 5, 6), (2, 4), 1, False),
((4, 5, 6, 7), (0, 2, 4), 2, False),
((4, 5, 6, 7), 3, -2, False),
((2, 6, 8), 8, -1, True)])
def test_onnx_export_split_v2(tmp_path, dtype, params):
from onnx.defs import onnx_opset_version
if onnx_opset_version() < 13 and not isinstance(params[1], int):
# opset12 only supports sections. indices is supported since opset13
return
M = def_model('split_v2', indices_or_sections=params[1], axis=params[2], squeeze_axis=params[3])
x = mx.nd.random.uniform(0, 10, params[0]).astype(dtype)
op_export_test('split_v2', M, [x], tmp_path)