Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

[v1.x] ONNX support for slice_like #19782

Merged
merged 4 commits into from
Jan 27, 2021
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
45 changes: 44 additions & 1 deletion python/mxnet/contrib/onnx/mx2onnx/_op_translations.py
Original file line number Diff line number Diff line change
Expand Up @@ -192,7 +192,7 @@ def create_tensor(tensor_list, tensor_name, initializer, dtype='int64'):
name=tensor_name,
data_type=data_type,
dims=dims,
vals=tensor_list,
vals=tensor_np.flatten().tolist(),
raw=False
)
)
Expand Down Expand Up @@ -3275,3 +3275,46 @@ def convert_gather_nd(node, **kwargs):
]

return nodes



@mx_op.register('slice_like')
def convert_slice_like(node, **kwargs):
"""Map MXNet's slice_like operator to onnx Slice operator."""
from onnx.helper import make_node, make_tensor
from onnx import TensorProto

name, input_nodes, attrs = get_inputs(node, kwargs)

axes = convert_string_to_list(attrs.get('axes', 'None'))
zero = make_tensor(name+'_zero', TensorProto.INT64, [1], [0])

nodes = []
if axes == [None]:
nodes += [
make_node('Shape', [input_nodes[1]], [name+'_shape_1']),
make_node('Shape', [name+'_shape_1'], [name+'_dim_1']),
make_node('ConstantOfShape', [name+'_dim_1'], [name+'_starts'], value=zero),
make_node('Slice', [input_nodes[0], name+'_starts', name+'_shape_1'], [name])
]
else:
axes = [[i] for i in axes]
nodes += [
create_tensor([0], name+'_0', kwargs['initializer']),
create_tensor(axes, name+'_axes_', kwargs['initializer']),
make_node('Shape', [input_nodes[0]], [name+'_shape_0']),
make_node('Shape', [input_nodes[1]], [name+'_shape_1']),
make_node('Shape', [name+'_shape_0'], [name+'_dim_0']),
make_node('Less', [name+'_axes_', name+'_0'], [name+'_less']),
make_node('Cast', [name+'_less'], [name+'_mask'], to=int(TensorProto.INT64)),
make_node('Mul', [name+'_mask', name+'_dim_0'], [name+'_mul']),
make_node('Add', [name+'_axes_', name+'_mul'], [name+'_axes']),
make_node('ConstantOfShape', [name+'_dim_0'], [name+'_starts'], value=zero),
make_node('GatherND', [name+'_shape_1', name+'_axes'], [name+'_gather']),
make_node('ScatterND', [name+'_shape_0', name+'_axes', name+'_gather'],
[name+'_ends']),
make_node('Slice', [input_nodes[0], name+'_starts', name+'_ends'], [name])
]

return nodes

18 changes: 18 additions & 0 deletions tests/python-pytest/onnx/test_operators.py
Original file line number Diff line number Diff line change
Expand Up @@ -539,3 +539,21 @@ def test_onnx_export_gather_nd(tmp_path, dtype):
M2 = def_model('gather_nd')
op_export_test('gather_nd2', M2, [x2, y2], tmp_path)


@pytest.mark.parametrize('dtype', ['float16', 'float32', 'float64', 'int32', 'int64'])
@pytest.mark.parametrize('axes', [None, (0, 1, 2), (-2, -3), (-2, 0)])
def test_onnx_export_slice_like(tmp_path, dtype, axes):
x = mx.nd.random.uniform(0, 1, (4, 5, 6, 7)).astype(dtype)
if axes is None:
M = def_model('slice_like')
y = mx.nd.zeros((2, 3, 4, 5), dtype=dtype)
op_export_test('slice_like', M, [x, y], tmp_path)
else:
M = def_model('slice_like', axes=axes)
y1 = mx.nd.zeros((2, 3, 4), dtype=dtype)
y2 = mx.nd.zeros((2, 3, 4, 5), dtype=dtype)
y3 = mx.nd.zeros((2, 3, 4, 5, 6), dtype=dtype)
op_export_test('slice_like_1', M, [x, y1], tmp_path)
op_export_test('slice_like_2', M, [x, y2], tmp_path)
op_export_test('slice_like_3', M, [x, y3], tmp_path)