Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

[v1.x] ONNX Supoort for MXNet reverse op #19737

Merged
merged 3 commits into from
Jan 13, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
41 changes: 41 additions & 0 deletions python/mxnet/contrib/onnx/mx2onnx/_op_translations.py
Original file line number Diff line number Diff line change
Expand Up @@ -2784,6 +2784,47 @@ def convert_arange(node, **kwargs):
return nodes


@mx_op.register("reverse")
def convert_reverse(node, **kwargs):
"""Map MXNet's reverse operator attributes to ONNX
"""
from onnx.helper import make_node
name, input_nodes, attrs = get_inputs(node, kwargs)

axis = int(attrs.get('axis', 0))

# Transpose takes perm as a parameter, so we must 'pad' the input to a known dim (10 here)
perm = [i for i in range(10)]
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

what happens if 10 is not enough?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I think in mxnet 10-d is the largest you can get

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I just checked: it seems we can create > 10-d tensors, but I think many ops do not support >= 10d tensors and in general there is no use case for high-dimensional tensors

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Got it, thanks for the explanation.

perm[0], perm[axis] = axis, 0

nodes = [
create_tensor([10], name+'_10', kwargs['initializer']),
create_tensor([0], name+'_0', kwargs['initializer']),
create_tensor([1], name+'_1', kwargs['initializer']),
create_tensor([-1], name+'_m1', kwargs['initializer']),
create_tensor([axis], name+'_axis', kwargs['initializer']),
create_tensor([axis+1], name+'_axis_p1', kwargs['initializer']),
create_tensor([], name+'_void', kwargs['initializer']),
create_const_scalar_node(name+'_m1_s', np.array([-1], dtype='int64'), kwargs),
make_node('Shape', [input_nodes[0]], [name+'_shape']),
make_node('Shape', [name+'_shape'], [name+'_dim']),
make_node('Sub', [name+'_10', name+'_dim'], [name+'_sub']),
make_node('Concat', [name+'_0', name+'_sub'], [name+'_concat'], axis=0),
make_node('Pad', [name+'_shape', name+'_concat', name+'_1'], [name+'_shape_10_dim']),
make_node('Reshape', [input_nodes[0], name+'_shape_10_dim'], [name+'_data_10_dim']),
make_node('Transpose', [name+'_data_10_dim'], [name+'_data_t'], perm=perm),
make_node('Slice', [name+'_shape', name+'_axis', name+'_axis_p1'], [name+'_axis_len']),
make_node('Sub', [name+'_axis_len', name+'_1'], [name+'_axis_len_m1']),
make_node('Reshape', [name+'_axis_len_m1', name+'_void'], [name+'_axis_len_m1_s']),
make_node('Range', [name+'_axis_len_m1_s', name+'_m1_s', name+'_m1_s'], [name+'_indices']),
make_node('Gather', [name+'_data_t', name+'_indices'], [name+'_gather']),
make_node('Transpose', [name+'_gather'], [name+'_data_reversed'], perm=perm),
make_node('Reshape', [name+'_data_reversed', name+'_shape'], [name], name=name)
]

return nodes


@mx_op.register('repeat')
def convert_repeat(node, **kwargs):
"""Map MXNet's repeat operator attributes to onnx's Tile operator.
Expand Down
8 changes: 8 additions & 0 deletions tests/python-pytest/onnx/test_operators.py
Original file line number Diff line number Diff line change
Expand Up @@ -353,6 +353,14 @@ def test_onnx_export_softmax(tmp_path, dtype):
op_export_test('softmax_4', M4, [x, l4], tmp_path)


@pytest.mark.parametrize('dtype', ['float16', 'float32', 'float64', 'int32', 'int64'])
@pytest.mark.parametrize('axis', [0, 1, 2, 3])
def test_onnx_export_reverse(tmp_path, dtype, axis):
x = mx.nd.arange(0, 120, dtype=dtype).reshape((2, 3, 4, 5))
M = def_model('reverse', axis=axis)
op_export_test('reverse', M, [x], tmp_path)


@pytest.mark.parametrize('dtype', ['float16', 'float32', 'float64', 'int32', 'int64'])
@pytest.mark.parametrize('axis', [None, 0, 1, 2, -1, -2, -3])
@pytest.mark.parametrize('repeats', [2, 1, 3])
Expand Down