Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

[numpy] Fix less/greater bug with scalar input #18642

Merged
merged 5 commits into from
Jul 4, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 3 additions & 2 deletions python/mxnet/ndarray/numpy/_op.py
Original file line number Diff line number Diff line change
Expand Up @@ -7171,8 +7171,9 @@ def greater(x1, x2, out=None):
>>> np.greater(1, np.ones(1))
array([False])
"""
return _ufunc_helper(x1, x2, _npi.greater, _np.greater, _npi.greater_scalar,
_npi.less_scalar, out)
if isinstance(x1, numeric_types) and isinstance(x2, numeric_types):
return _np.greater(x1, x2, out=out)
return _api_internal.greater(x1, x2, out)


@set_module('mxnet.ndarray.numpy')
Expand Down
34 changes: 28 additions & 6 deletions src/api/operator/numpy/np_elemwise_broadcast_logic_op.cc
Original file line number Diff line number Diff line change
Expand Up @@ -44,31 +44,53 @@ MXNET_REGISTER_API("_npi.not_equal")
UFuncHelper(args, ret, op, op_scalar, nullptr);
});

void SetUFuncHelper(runtime::MXNetArgs args, runtime::MXNetRetValue* ret,
const nnvm::Op* op, const nnvm::Op* op_scalar,
const nnvm::Op* op_rscalar) {
if (args[0].type_code() == kNDArrayHandle &&
args[1].type_code() == kNDArrayHandle) {
UFuncHelper(args, ret, op, nullptr, nullptr);
} else if (args[0].type_code() == kNDArrayHandle) {
UFuncHelper(args, ret, nullptr, op_scalar, nullptr);
} else {
UFuncHelper(args, ret, nullptr, nullptr, op_rscalar);
}
}

MXNET_REGISTER_API("_npi.greater")
.set_body([](runtime::MXNetArgs args, runtime::MXNetRetValue* ret) {
using namespace runtime;
const nnvm::Op* op = Op::Get("_npi_greater");
const nnvm::Op* op_scalar = Op::Get("_npi_greater_scalar");
const nnvm::Op* op_rscalar = Op::Get("_npi_less_scalar");
SetUFuncHelper(args, ret, op, op_scalar, op_rscalar);
});

MXNET_REGISTER_API("_npi.less")
.set_body([](runtime::MXNetArgs args, runtime::MXNetRetValue* ret) {
using namespace runtime;
const nnvm::Op* op = Op::Get("_npi_less");
const nnvm::Op* op_scalar = Op::Get("_npi_less_scalar");
const nnvm::Op* op_rscalar = Op::Get("_npi_less_scalar");
UFuncHelper(args, ret, op, op_scalar, op_rscalar);
const nnvm::Op* op_rscalar = Op::Get("_npi_greater_scalar");
SetUFuncHelper(args, ret, op, op_scalar, op_rscalar);
});

MXNET_REGISTER_API("_npi.greater_equal")
.set_body([](runtime::MXNetArgs args, runtime::MXNetRetValue* ret) {
using namespace runtime;
const nnvm::Op* op = Op::Get("_npi_greater_equal");
const nnvm::Op* op_scalar = Op::Get("_npi_greater_equal_scalar");
const nnvm::Op* op_rscalar = Op::Get("_npi_greater_equal_scalar");
UFuncHelper(args, ret, op, op_scalar, op_rscalar);
const nnvm::Op* op_rscalar = Op::Get("_npi_less_equal_scalar");
SetUFuncHelper(args, ret, op, op_scalar, op_rscalar);
});

MXNET_REGISTER_API("_npi.less_equal")
.set_body([](runtime::MXNetArgs args, runtime::MXNetRetValue* ret) {
using namespace runtime;
const nnvm::Op* op = Op::Get("_npi_less_equal");
const nnvm::Op* op_scalar = Op::Get("_npi_less_equal_scalar");
const nnvm::Op* op_rscalar = Op::Get("_npi_less_equal_scalar");
UFuncHelper(args, ret, op, op_scalar, op_rscalar);
const nnvm::Op* op_rscalar = Op::Get("_npi_greater_equal_scalar");
SetUFuncHelper(args, ret, op, op_scalar, op_rscalar);
});

} // namespace mxnet
8 changes: 8 additions & 0 deletions tests/python/unittest/test_numpy_interoperability.py
Original file line number Diff line number Diff line change
Expand Up @@ -1947,6 +1947,8 @@ def _add_workload_greater(array_pool):
# OpArgMngr.add_workload('greater', np.array([0, 1, 2, 4, 2], dtype=np.float16), np.array([-2, 5, 1, 4, 3], dtype=np.float16))
OpArgMngr.add_workload('greater', np.array([0, 1, 2, 4, 2], dtype=np.float32), np.array([-2, 5, 1, 4, 3], dtype=np.float32))
OpArgMngr.add_workload('greater', array_pool['4x1'], array_pool['1x2'])
OpArgMngr.add_workload('greater', array_pool['4x1'], 2)
OpArgMngr.add_workload('greater', 2, array_pool['4x1'])
# TODO(junwu): mxnet currently does not have a consistent behavior as NumPy in dealing with np.nan
# OpArgMngr.add_workload('greater', np.array([np.nan]), np.array([np.nan]))

Expand All @@ -1956,6 +1958,8 @@ def _add_workload_greater_equal(array_pool):
# OpArgMngr.add_workload('greater_equal', np.array([0, 1, 2, 4, 2], dtype=np.float16), np.array([-2, 5, 1, 4, 3], dtype=np.float16))
OpArgMngr.add_workload('greater_equal', np.array([0, 1, 2, 4, 2], dtype=np.float32), np.array([-2, 5, 1, 4, 3], dtype=np.float32))
OpArgMngr.add_workload('greater_equal', array_pool['4x1'], array_pool['1x2'])
OpArgMngr.add_workload('greater_equal', array_pool['4x1'], 2)
OpArgMngr.add_workload('greater_equal', 2, array_pool['4x1'])
# TODO(junwu): mxnet currently does not have a consistent behavior as NumPy in dealing with np.nan
# OpArgMngr.add_workload('greater_equal', np.array([np.nan]), np.array([np.nan]))

Expand All @@ -1965,6 +1969,8 @@ def _add_workload_less(array_pool):
# OpArgMngr.add_workload('less', np.array([0, 1, 2, 4, 2], dtype=np.float16), np.array([-2, 5, 1, 4, 3], dtype=np.float16))
OpArgMngr.add_workload('less', np.array([0, 1, 2, 4, 2], dtype=np.float32), np.array([-2, 5, 1, 4, 3], dtype=np.float32))
OpArgMngr.add_workload('less', array_pool['4x1'], array_pool['1x2'])
OpArgMngr.add_workload('less', array_pool['4x1'], 2)
OpArgMngr.add_workload('less', 2, array_pool['4x1'])
# TODO(junwu): mxnet currently does not have a consistent behavior as NumPy in dealing with np.nan
# OpArgMngr.add_workload('less', np.array([np.nan]), np.array([np.nan]))

Expand All @@ -1974,6 +1980,8 @@ def _add_workload_less_equal(array_pool):
# OpArgMngr.add_workload('less_equal', np.array([0, 1, 2, 4, 2], dtype=np.float16), np.array([-2, 5, 1, 4, 3], dtype=np.float16))
OpArgMngr.add_workload('less_equal', np.array([0, 1, 2, 4, 2], dtype=np.float32), np.array([-2, 5, 1, 4, 3], dtype=np.float32))
OpArgMngr.add_workload('less_equal', array_pool['4x1'], array_pool['1x2'])
OpArgMngr.add_workload('less_equal', array_pool['4x1'], 2)
OpArgMngr.add_workload('less_equal', 2, array_pool['4x1'])
# TODO(junwu): mxnet currently does not have a consistent behavior as NumPy in dealing with np.nan
# OpArgMngr.add_workload('less_equal', np.array([np.nan]), np.array([np.nan]))

Expand Down