Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

[Numpy] Add op linalg.matrix_rank #18020

Merged
merged 1 commit into from
Apr 14, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
9 changes: 5 additions & 4 deletions benchmark/python/ffi/benchmark_ffi.py
Original file line number Diff line number Diff line change
Expand Up @@ -65,6 +65,7 @@ def prepare_workloads():
OpArgMngr.add_workload("linalg.eigh", pool['3x3'])
OpArgMngr.add_workload("linalg.det", pool['3x3'])
OpArgMngr.add_workload("linalg.slogdet", pool['3x3'])
OpArgMngr.add_workload("linalg.matrix_rank", pool['3x3'], pool['1'], hermitian=False)
OpArgMngr.add_workload("linalg.svd", pool['3x3'])
OpArgMngr.add_workload("linalg.cholesky", pool['1x1'])
OpArgMngr.add_workload("linalg.eigvals", pool['1x1'])
Expand Down Expand Up @@ -124,10 +125,10 @@ def prepare_workloads():
out=dnp.array([False, False], dtype=bool), keepdims=False)
OpArgMngr.add_workload("roll", pool["2x2"], 1, axis=0)
OpArgMngr.add_workload("rot90", pool["2x2"], 2)
OpArgMngr.add_workload("array_split", pool['2X2'], 2, axis=1)
OpArgMngr.add_workload("vsplit", pool['2X2'], 2)
OpArgMngr.add_workload("hsplit", pool['2X2'], 2)
OpArgMngr.add_workload("dsplit", pool['2X2x2'], 2)
OpArgMngr.add_workload("array_split", pool['2x2'], 2, axis=1)
OpArgMngr.add_workload("vsplit", pool['2x2'], 2)
OpArgMngr.add_workload("hsplit", pool['2x2'], 2)
OpArgMngr.add_workload("dsplit", pool['2x2x2'], 2)
OpArgMngr.add_workload("arange", 10)
OpArgMngr.add_workload("concatenate", (pool['1x2'], pool['1x2'], pool['1x2']), axis=0)
OpArgMngr.add_workload("append", pool['2x2'], pool['1x2'], axis=0)
Expand Down
47 changes: 46 additions & 1 deletion python/mxnet/ndarray/numpy/linalg.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,7 +23,52 @@
from . import _api_internal

__all__ = ['norm', 'svd', 'cholesky', 'qr', 'inv', 'det', 'slogdet', 'solve', 'tensorinv', 'tensorsolve',
'pinv', 'eigvals', 'eig', 'eigvalsh', 'eigh', 'lstsq']
'pinv', 'eigvals', 'eig', 'eigvalsh', 'eigh', 'lstsq', 'matrix_rank']


def matrix_rank(M, tol=None, hermitian=False):
"""
Return matrix rank of array using SVD method

Rank of the array is the number of singular values of the array that are
greater than `tol`.

Parameters
M : {(M,), (..., M, N)} ndarray
Input vector or stack of matrices.
tol : (...) ndarray, float, optional
Threshold below which SVD values are considered zero. If `tol` is
None, and ``S`` is an array with singular values for `M`, and
``eps`` is the epsilon value for datatype of ``S``, then `tol` is
set to ``S.max() * max(M.shape) * eps``.
hermitian : bool, optional
If True, `M` is assumed to be Hermitian (symmetric if real-valued),
enabling a more efficient method for finding singular values.
Defaults to False.

Returns
-------
rank : (...) ndarray
Rank of M.

Examples
--------
>>> from mxnet import np
>>> np.matrix_rank(np.eye(4)) # Full rank matrix
4
>>> I=np.eye(4); I[-1,-1] = 0. # rank deficient matrix
>>> np.matrix_rank(I)
3
>>> np.matrix_rank(np.ones((4,))) # 1 dimension - rank 1 unless all 0
1
>>> np.matrix_rank(np.zeros((4,)))
0
"""
finfo_eps_32 = _np.finfo(_np.float32).eps
finfo_eps_64 = _np.finfo(_np.float64).eps
if hermitian is True:
raise NotImplementedError("hermitian is not supported yet...")
return _api_internal.matrix_rank(M, tol, hermitian, finfo_eps_32, finfo_eps_64)


def lstsq(a, b, rcond='warn'):
Expand Down
2 changes: 0 additions & 2 deletions python/mxnet/numpy/fallback_linalg.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,11 +24,9 @@
__all__ = [
'cond',
'matrix_power',
'matrix_rank',
'multi_dot'
]

cond = onp.linalg.cond
matrix_power = onp.linalg.matrix_power
matrix_rank = onp.linalg.matrix_rank
multi_dot = onp.linalg.multi_dot
43 changes: 42 additions & 1 deletion python/mxnet/numpy/linalg.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,10 +22,51 @@
from . import fallback_linalg

__all__ = ['norm', 'svd', 'cholesky', 'qr', 'inv', 'det', 'slogdet', 'solve', 'tensorinv', 'tensorsolve',
'pinv', 'eigvals', 'eig', 'eigvalsh', 'eigh', 'lstsq']
'pinv', 'eigvals', 'eig', 'eigvalsh', 'eigh', 'lstsq', 'matrix_rank']
__all__ += fallback_linalg.__all__
sjtuWangDing marked this conversation as resolved.
Show resolved Hide resolved


def matrix_rank(M, tol=None, hermitian=False):
"""
Return matrix rank of array using SVD method

Rank of the array is the number of singular values of the array that are
greater than `tol`.

Parameters
M : {(M,), (..., M, N)} ndarray
Input vector or stack of matrices.
tol : (...) ndarray, float, optional
Threshold below which SVD values are considered zero. If `tol` is
None, and ``S`` is an array with singular values for `M`, and
``eps`` is the epsilon value for datatype of ``S``, then `tol` is
set to ``S.max() * max(M.shape) * eps``.
hermitian : bool, optional
If True, `M` is assumed to be Hermitian (symmetric if real-valued),
enabling a more efficient method for finding singular values.
Defaults to False.

Returns
-------
rank : (...) ndarray
Rank of M.

Examples
--------
>>> from mxnet import np
>>> np.matrix_rank(np.eye(4)) # Full rank matrix
4
>>> I=np.eye(4); I[-1,-1] = 0. # rank deficient matrix
>>> np.matrix_rank(I)
3
>>> np.matrix_rank(np.ones((4,))) # 1 dimension - rank 1 unless all 0
1
>>> np.matrix_rank(np.zeros((4,)))
0
"""
return _mx_nd_np.linalg.matrix_rank(M, tol, hermitian)


def lstsq(a, b, rcond='warn'):
r"""
Return the least-squares solution to a linear matrix equation.
Expand Down
1 change: 1 addition & 0 deletions python/mxnet/numpy_dispatch_protocol.py
Original file line number Diff line number Diff line change
Expand Up @@ -166,6 +166,7 @@ def _run_with_array_ufunc_proto(*args, **kwargs):
'linalg.eigvalsh',
'linalg.eigh',
'linalg.qr',
'linalg.matrix_rank',
'shape',
'trace',
'tril',
Expand Down
35 changes: 34 additions & 1 deletion python/mxnet/symbol/numpy/linalg.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,7 +23,40 @@
from . import _internal as _npi

__all__ = ['norm', 'svd', 'cholesky', 'qr', 'inv', 'det', 'slogdet', 'solve', 'tensorinv', 'tensorsolve',
'pinv', 'eigvals', 'eig', 'eigvalsh', 'eigh', 'lstsq']
'pinv', 'eigvals', 'eig', 'eigvalsh', 'eigh', 'lstsq', 'matrix_rank']


def matrix_rank(M, tol=None, hermitian=False):
"""
Return matrix rank of array using SVD method

Rank of the array is the number of singular values of the array that are
greater than `tol`.

Parameters
M : {(M,), (..., M, N)} _Symbol
Input vector or stack of matrices.
tol : (...) _Symbol, float, optional
Threshold below which SVD values are considered zero. If `tol` is
None, and ``S`` is an array with singular values for `M`, and
``eps`` is the epsilon value for datatype of ``S``, then `tol` is
set to ``S.max() * max(M.shape) * eps``.
hermitian : bool, optional
If True, `M` is assumed to be Hermitian (symmetric if real-valued),
enabling a more efficient method for finding singular values.
Defaults to False.

Returns
-------
rank : (...) _Symbol
Rank of M.
"""
finfo_eps_32 = _np.finfo(_np.float32).eps
finfo_eps_64 = _np.finfo(_np.float64).eps
if tol is None:
return _npi.matrix_rank_none_tol(M, finfo_eps_32, finfo_eps_64, hermitian)
else:
return _npi.matrix_rank(M, tol, hermitian)


def lstsq(a, b, rcond='warn'):
Expand Down
76 changes: 76 additions & 0 deletions src/api/operator/numpy/linalg/np_matrix_rank.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,76 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/

/*!
* \file np_pinv.cc
* \brief Implementation of the API of functions in src/operator/numpy/linalg/np_matrix_rank.cc
*/
#include <mxnet/api_registry.h>
#include <mxnet/runtime/packed_func.h>
#include "../../utils.h"
#include "../../../../operator/numpy/linalg/np_matrix_rank-inl.h"

namespace mxnet {

inline static void _npi_matrix_rank_none_tol(runtime::MXNetArgs args,
runtime::MXNetRetValue* ret) {
using namespace runtime;
const nnvm::Op* op = Op::Get("_npi_matrix_rank_none_tol");
op::MatrixRankNoneTolParam param;
nnvm::NodeAttrs attrs;
param.hermitian = args[2].operator bool();
param.finfoEps32 = args[3].operator double();
param.finfoEps64 = args[4].operator double();
attrs.parsed = param;
attrs.op = op;
SetAttrDict<op::MatrixRankNoneTolParam>(&attrs);
int num_inputs = 1;
int num_outputs = 0;
NDArray* inputs[] = {args[0].operator mxnet::NDArray*()};
auto ndoutputs = Invoke(op, &attrs, num_inputs, inputs, &num_outputs, nullptr);
*ret = reinterpret_cast<mxnet::NDArray*>(ndoutputs[0]);
}

inline static void _npi_matrix_rank(runtime::MXNetArgs args,
runtime::MXNetRetValue* ret) {
using namespace runtime;
const nnvm::Op* op = Op::Get("_npi_matrix_rank");
op::MatrixRankParam param;
nnvm::NodeAttrs attrs;
param.hermitian = args[2].operator bool();
attrs.parsed = param;
attrs.op = op;
SetAttrDict<op::MatrixRankParam>(&attrs);
int num_inputs = 2;
int num_outputs = 0;
NDArray* inputs[] = {args[0].operator mxnet::NDArray*(), args[1].operator mxnet::NDArray*()};
auto ndoutputs = Invoke(op, &attrs, num_inputs, inputs, &num_outputs, nullptr);
*ret = reinterpret_cast<mxnet::NDArray*>(ndoutputs[0]);
}

MXNET_REGISTER_API("_npi.matrix_rank")
.set_body([](runtime::MXNetArgs args, runtime::MXNetRetValue* ret) {
if (args[1].type_code() == kNull) {
_npi_matrix_rank_none_tol(args, ret);
} else {
_npi_matrix_rank(args, ret);
}
});

} // namespace mxnet
Loading