Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

Commit

Permalink
ffi_atleast_1/2/3d (#17897)
Browse files Browse the repository at this point in the history
  • Loading branch information
Tommliu authored Apr 8, 2020
1 parent a960f5a commit f906a02
Show file tree
Hide file tree
Showing 9 changed files with 394 additions and 111 deletions.
3 changes: 3 additions & 0 deletions benchmark/python/ffi/benchmark_ffi.py
Original file line number Diff line number Diff line change
Expand Up @@ -73,6 +73,9 @@ def prepare_workloads():
OpArgMngr.add_workload("split", pool['3x3'], (0, 1, 2), axis=1)
OpArgMngr.add_workload("argmax", pool['3x2'], axis=-1)
OpArgMngr.add_workload("argmin", pool['3x2'], axis=-1)
OpArgMngr.add_workload("atleast_1d", pool['2'], pool['2x2'])
OpArgMngr.add_workload("atleast_2d", pool['2'], pool['2x2'])
OpArgMngr.add_workload("atleast_3d", pool['2'], pool['2x2'])
OpArgMngr.add_workload("indices", dimensions=(1, 2, 3))
OpArgMngr.add_workload("subtract", pool['2x2'], pool['2x2'])
OpArgMngr.add_workload("multiply", pool['2x2'], pool['2x2'])
Expand Down
107 changes: 0 additions & 107 deletions python/mxnet/_numpy_op_doc.py
Original file line number Diff line number Diff line change
Expand Up @@ -370,113 +370,6 @@ def _np_copy(a, out=None):
pass


def _np_atleast_1d(*arys):
"""
Convert inputs to arrays with at least one dimension.
Scalar inputs are converted to 1-dimensional arrays, whilst higher-dimensional inputs are preserved.
Parameters
----------
arys1, arys2, ... : ndarray
One or more input arrays.
Returns
-------
ret : ndarray
An array, or list of arrays, each with a.ndim >= 1. Copies are made only if necessary.
See also
--------
atleast_2d, atleast_3d
Examples
--------
>>> np.atleast_1d(1.0)
array([1.])
>>> x = np.arange(9.0).reshape(3,3)
>>> np.atleast_1d(x)
array([[0., 1., 2.],
[3., 4., 5.],
[6., 7., 8.]])
>>> np.atleast_1d(np.array(1), np.array([3, 4]))
[array([1.]), array([3., 4.])]
"""
pass


def _np_atleast_2d(*arys):
"""
Convert inputs to arrays with at least two dimensions.
Parameters
----------
arys1, arys2, ... : ndarray
One or more input arrays.
Returns
-------
ret : ndarray
An array, or list of arrays, each with a.ndim >= 2. Copies are made only if necessary.
See also
--------
atleast_1d, atleast_3d
Examples
--------
>>> np.atleast_2d(3.0)
array([[3.]])
>>> x = np.arange(3.0)
>>> np.atleast_2d(x)
array([[0., 1., 2.]])
>>> np.atleast_2d(np.array(1), np.array([1, 2]), np.array([[1, 2]]))
[array([[1.]]), array([[1., 2.]]), array([[1., 2.]])]
"""
pass

def _np_atleast_3d(*arys):
"""
Convert inputs to arrays with at least three dimension.
Parameters
----------
arys1, arys2, ... : ndarray
One or more input arrays.
Returns
-------
ret : ndarray
An array, or list of arrays, each with a.ndim >= 3.
For example, a 1-D array of shape (N,) becomes a view of shape (1, N, 1),
and a 2-D array of shape (M, N) becomes a view of shape (M, N, 1).
See also
--------
atleast_1d, atleast_2d
Examples
--------
>>> np.atleast_3d(3.0)
array([[[3.]]])
>>> x = np.arange(3.0)
>>> np.atleast_3d(x).shape
(1, 3, 1)
>>> x = np.arange(12.0).reshape(4,3)
>>> np.atleast_3d(x).shape
(4, 3, 1)
>>> for arr in np.atleast_3d(np.array([1, 2]), np.array([[1, 2]]), np.array([[[1, 2]]])):
... print(arr, arr.shape)
...
[[[1.]
[2.]]] (1, 2, 1)
[[[1.]
[2.]]] (1, 2, 1)
[[[1. 2.]]] (1, 1, 2)
"""
pass


def _np_reshape(a, newshape, order='C', out=None):
"""
Gives a new shape to an array without changing its data.
Expand Down
118 changes: 118 additions & 0 deletions python/mxnet/ndarray/numpy/_op.py
Original file line number Diff line number Diff line change
Expand Up @@ -47,6 +47,7 @@
'equal', 'not_equal', 'greater', 'less', 'greater_equal', 'less_equal', 'roll', 'rot90', 'einsum',
'true_divide', 'nonzero', 'quantile', 'percentile', 'shares_memory', 'may_share_memory',
'diff', 'ediff1d', 'resize', 'polyval', 'nan_to_num', 'isnan', 'isinf', 'isposinf', 'isneginf', 'isfinite',
'atleast_1d', 'atleast_2d', 'atleast_3d',
'where', 'bincount', 'pad', 'cumsum', 'diag', 'diagonal']


Expand Down Expand Up @@ -7590,6 +7591,123 @@ def isfinite(x, out=None, **kwargs):
return _unary_func_helper(x, _npi.isfinite, _np.isfinite, out=out, **kwargs)


@set_module('mxnet.ndarray.numpy')
def atleast_1d(*arys):
"""
Convert inputs to arrays with at least one dimension.
Scalar inputs are converted to 1-dimensional arrays, whilst higher-dimensional inputs are preserved.
Parameters
----------
arys1, arys2, ... : ndarray
One or more input arrays.
Returns
-------
ret : ndarray
An array, or list of arrays, each with a.ndim >= 1. Copies are made only if necessary.
See also
--------
atleast_2d, atleast_3d
Examples
--------
>>> np.atleast_1d(1.0)
array([1.])
>>> x = np.arange(9.0).reshape(3,3)
>>> np.atleast_1d(x)
array([[0., 1., 2.],
[3., 4., 5.],
[6., 7., 8.]])
>>> np.atleast_1d(np.array(1), np.array([3, 4]))
[array([1.]), array([3., 4.])]
"""
if len(arys) == 1:
return _api_internal.atleast_1d(*arys)[0]
return list(_api_internal.atleast_1d(*arys))


@set_module('mxnet.ndarray.numpy')
def atleast_2d(*arys):
"""
Convert inputs to arrays with at least two dimensions.
Parameters
----------
arys1, arys2, ... : ndarray
One or more input arrays.
Returns
-------
ret : ndarray
An array, or list of arrays, each with a.ndim >= 2. Copies are made only if necessary.
See also
--------
atleast_1d, atleast_3d
Examples
--------
>>> np.atleast_2d(3.0)
array([[3.]])
>>> x = np.arange(3.0)
>>> np.atleast_2d(x)
array([[0., 1., 2.]])
>>> np.atleast_2d(np.array(1), np.array([1, 2]), np.array([[1, 2]]))
[array([[1.]]), array([[1., 2.]]), array([[1., 2.]])]
"""
if len(arys) == 1:
return _api_internal.atleast_2d(*arys)[0]
return list(_api_internal.atleast_2d(*arys))


@set_module('mxnet.ndarray.numpy')
def atleast_3d(*arys):
"""
Convert inputs to arrays with at least three dimension.
Parameters
----------
arys1, arys2, ... : ndarray
One or more input arrays.
Returns
-------
ret : ndarray
An array, or list of arrays, each with a.ndim >= 3.
For example, a 1-D array of shape (N,) becomes a view of shape (1, N, 1),
and a 2-D array of shape (M, N) becomes a view of shape (M, N, 1).
See also
--------
atleast_1d, atleast_2d
Examples
--------
>>> np.atleast_3d(3.0)
array([[[3.]]])
>>> x = np.arange(3.0)
>>> np.atleast_3d(x).shape
(1, 3, 1)
>>> x = np.arange(12.0).reshape(4,3)
>>> np.atleast_3d(x).shape
(4, 3, 1)
>>> for arr in np.atleast_3d(np.array([1, 2]), np.array([[1, 2]]), np.array([[[1, 2]]])):
... print(arr, arr.shape)
...
[[[1.]
[2.]]] (1, 2, 1)
[[[1.]
[2.]]] (1, 2, 1)
[[[1. 2.]]] (1, 1, 2)
"""
if len(arys) == 1:
return _api_internal.atleast_3d(*arys)[0]
return list(_api_internal.atleast_3d(*arys))


@set_module('mxnet.ndarray.numpy')
def where(condition, x=None, y=None): # pylint: disable=too-many-return-statements
"""where(condition, [x, y])
Expand Down
112 changes: 112 additions & 0 deletions python/mxnet/numpy/multiarray.py
Original file line number Diff line number Diff line change
Expand Up @@ -73,6 +73,7 @@
'greater', 'less', 'greater_equal', 'less_equal', 'roll', 'rot90', 'einsum', 'true_divide', 'nonzero',
'quantile', 'percentile', 'shares_memory', 'may_share_memory', 'diff', 'ediff1d', 'resize', 'matmul',
'nan_to_num', 'isnan', 'isinf', 'isposinf', 'isneginf', 'isfinite', 'polyval', 'where', 'bincount',
'atleast_1d', 'atleast_2d', 'atleast_3d',
'pad', 'cumsum', 'diag', 'diagonal']

__all__ += fallback.__all__
Expand Down Expand Up @@ -10000,6 +10001,117 @@ def bincount(x, weights=None, minlength=0):
return _mx_nd_np.bincount(x, weights=weights, minlength=minlength)


@set_module('mxnet.numpy')
def atleast_1d(*arys):
"""
Convert inputs to arrays with at least one dimension.
Scalar inputs are converted to 1-dimensional arrays, whilst higher-dimensional inputs are preserved.
Parameters
----------
arys1, arys2, ... : ndarray
One or more input arrays.
Returns
-------
ret : ndarray
An array, or list of arrays, each with a.ndim >= 1. Copies are made only if necessary.
See also
--------
atleast_2d, atleast_3d
Examples
--------
>>> np.atleast_1d(1.0)
array([1.])
>>> x = np.arange(9.0).reshape(3,3)
>>> np.atleast_1d(x)
array([[0., 1., 2.],
[3., 4., 5.],
[6., 7., 8.]])
>>> np.atleast_1d(np.array(1), np.array([3, 4]))
[array([1.]), array([3., 4.])]
"""
return _mx_nd_np.atleast_1d(*arys)


@set_module('mxnet.numpy')
def atleast_2d(*arys):
"""
Convert inputs to arrays with at least two dimensions.
Parameters
----------
arys1, arys2, ... : ndarray
One or more input arrays.
Returns
-------
ret : ndarray
An array, or list of arrays, each with a.ndim >= 2. Copies are made only if necessary.
See also
--------
atleast_1d, atleast_3d
Examples
--------
>>> np.atleast_2d(3.0)
array([[3.]])
>>> x = np.arange(3.0)
>>> np.atleast_2d(x)
array([[0., 1., 2.]])
>>> np.atleast_2d(np.array(1), np.array([1, 2]), np.array([[1, 2]]))
[array([[1.]]), array([[1., 2.]]), array([[1., 2.]])]
"""
return _mx_nd_np.atleast_2d(*arys)


@set_module('mxnet.numpy')
def atleast_3d(*arys):
"""
Convert inputs to arrays with at least three dimension.
Parameters
----------
arys1, arys2, ... : ndarray
One or more input arrays.
Returns
-------
ret : ndarray
An array, or list of arrays, each with a.ndim >= 3.
For example, a 1-D array of shape (N,) becomes a view of shape (1, N, 1),
and a 2-D array of shape (M, N) becomes a view of shape (M, N, 1).
See also
--------
atleast_1d, atleast_2d
Examples
--------
>>> np.atleast_3d(3.0)
array([[[3.]]])
>>> x = np.arange(3.0)
>>> np.atleast_3d(x).shape
(1, 3, 1)
>>> x = np.arange(12.0).reshape(4,3)
>>> np.atleast_3d(x).shape
(4, 3, 1)
>>> for arr in np.atleast_3d(np.array([1, 2]), np.array([[1, 2]]), np.array([[[1, 2]]])):
... print(arr, arr.shape)
...
[[[1.]
[2.]]] (1, 2, 1)
[[[1.]
[2.]]] (1, 2, 1)
[[[1. 2.]]] (1, 1, 2)
"""
return _mx_nd_np.atleast_3d(*arys)


@set_module('mxnet.numpy')
def pad(x, pad_width=None, mode="constant", **kwargs): # pylint: disable=too-many-arguments
"""
Expand Down
Loading

0 comments on commit f906a02

Please sign in to comment.