Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

Commit

Permalink
Operators for mean(csr, axis=0) and mean(csr, axis=1) (#8264)
Browse files Browse the repository at this point in the history
* Add Infer storage for sparse slice operator

* Remove unused files

* Indentation fix and add gpu test for fallback

* Change sum builtin to py_sum

* Add sum_axis(csr,axis=0)=dense and sum(csr,axis=1)=dense operator

* Documentation changes for sparse

* Add fallback unittest for keepdims and exclude

* PR review based changes
:

* Fix CHECK_NE

* Change in_stype to int

* Using const int instead of int

* Initialize mid with the start

* Add mean(csr, axis=0) and mean(csr, axis=1)

* Removing whitespace

* Add brief comment for normalize

* Add a comma

* Lint changes
  • Loading branch information
anirudh2290 authored and piiswrong committed Nov 8, 2017
1 parent 4862c41 commit c2358f9
Show file tree
Hide file tree
Showing 3 changed files with 43 additions and 21 deletions.
41 changes: 29 additions & 12 deletions src/operator/tensor/broadcast_reduce_op.h
Original file line number Diff line number Diff line change
Expand Up @@ -566,14 +566,15 @@ struct SumCsrKernel<req, 1> {
}
};

template <typename xpu>
/*! \brief If normalize is true, the mean should be computed instead of sum */
template <typename xpu, bool normalize = false>
void SumCsrImpl(const nnvm::NodeAttrs& attrs, mshadow::Stream<xpu>* s, const OpContext& ctx,
const NDArray& input, const OpReqType req, NDArray* output) {
if (req == kNullOp) return;
const ReduceAxesParam& param = nnvm::get<ReduceAxesParam>(attrs.parsed);
CHECK_EQ(param.axis.ndim(), 1U) << "sum(csr) only supports axis 0 or 1";
CHECK_EQ(param.axis.ndim(), 1U) << "sum(csr)/mean(csr) only supports axis 0 or 1";
CHECK(param.axis[0] == 0 || param.axis[0] == 1)
<< "sum(csr) only support axis 0 or 1";
<< "sum(csr)/mean(csr) only support axis 0 or 1";
CHECK(!param.keepdims) << "keepdims not supported for sparse";
CHECK(!param.exclude) << "exclude not supported for sparse";
int64_t out_data_size = 0;
Expand All @@ -586,6 +587,7 @@ void SumCsrImpl(const nnvm::NodeAttrs& attrs, mshadow::Stream<xpu>* s, const OpC
CHECK_EQ(output->storage_type(), kDefaultStorage);

using namespace mshadow;
using namespace mshadow::expr;
using namespace mxnet_op;
using namespace csr;
using nnvm::dim_t;
Expand Down Expand Up @@ -630,19 +632,34 @@ void SumCsrImpl(const nnvm::NodeAttrs& attrs, mshadow::Stream<xpu>* s, const OpC
s, num_threads, output->data().dptr<DType>(), in_indptr, in_idx,
in_data, sum.dptr_, residual.dptr_, num_rows, num_cols,
seg_len);
if (normalize) {
mxnet_op::Kernel<
mxnet_op::op_with_req<mshadow::op::div, req_type>,
xpu>::Launch(s, out_data_size, output->data().dptr<DType>(),
output->data().dptr<DType>(), DType(num_rows));
}
});
});
});
});
} else if (1 == param.axis[0]) {
MSHADOW_IDX_TYPE_SWITCH(input.aux_type(kIndPtr), RType, {
MSHADOW_TYPE_SWITCH(input.dtype(), DType, {
MXNET_ASSIGN_REQ_SWITCH(req, req_type, {
const RType* in_indptr = input.aux_data(kIndPtr).dptr<RType>();
const DType* in_data = input.data().dptr<DType>();
Kernel<SumCsrKernel<req_type, 1>, xpu>::Launch(
s, out_data_size, output->data().dptr<DType>(), in_indptr,
in_data);
MSHADOW_IDX_TYPE_SWITCH(input.aux_type(kIdx), IType, {
MSHADOW_TYPE_SWITCH(input.dtype(), DType, {
MXNET_ASSIGN_REQ_SWITCH(req, req_type, {
const RType* in_indptr = input.aux_data(kIndPtr).dptr<RType>();
const DType* in_data = input.data().dptr<DType>();
const IType num_cols = input.shape()[1];
Kernel<SumCsrKernel<req_type, 1>, xpu>::Launch(
s, out_data_size, output->data().dptr<DType>(), in_indptr,
in_data);
if (normalize) {
mxnet_op::Kernel<
mxnet_op::op_with_req<mshadow::op::div, req_type>,
xpu>::Launch(s, out_data_size, output->data().dptr<DType>(),
output->data().dptr<DType>(), DType(num_cols));
}
});
});
});
});
Expand All @@ -661,9 +678,9 @@ void SumOpForwardEx(const nnvm::NodeAttrs& attrs, const OpContext& ctx,
const NDArrayStorageType istype = inputs[0].storage_type();
if (istype == kCSRStorage) {
CHECK_EQ(inputs[0].shape().ndim(), 2U)
<< "sum(csr) op only supports 2D ndarray as input";
<< "sum(csr)/mean(csr) op only supports 2D ndarray as input";
NDArray output = outputs[0];
SumCsrImpl(attrs, s, ctx, inputs[0], req[0], &output);
SumCsrImpl<xpu, normalize>(attrs, s, ctx, inputs[0], req[0], &output);
} else {
LOG(FATAL) << "Not implemented: "
<< operator_string(attrs, ctx, inputs, req, outputs);
Expand Down
3 changes: 3 additions & 0 deletions src/operator/tensor/broadcast_reduce_op_value.cc
Original file line number Diff line number Diff line change
Expand Up @@ -96,8 +96,11 @@ MXNET_OPERATOR_REGISTER_REDUCE_BACKWARD(_backward_sum)
.set_attr<FCompute>("FCompute<cpu>", ReduceAxesBackwardUseNone<cpu>);

MXNET_OPERATOR_REGISTER_REDUCE(mean)
MXNET_ADD_SPARSE_OP_ALIAS(mean)
.describe(get_reduce_axes_description("mean", __LINE__))
.set_attr<FCompute>("FCompute<cpu>", ReduceAxesCompute<cpu, mshadow::red::sum, true>)
.set_attr<FComputeEx>("FComputeEx<cpu>", SumOpForwardEx<cpu, mshadow::red::sum, true>)
.set_attr<FInferStorageType>("FInferStorageType", SumOpForwardInferStorageType)
.set_attr<FResourceRequest>("FResourceRequest",
[](const NodeAttrs& attrs) {
return std::vector<ResourceRequest>{ResourceRequest::kTempSpace};
Expand Down
20 changes: 11 additions & 9 deletions tests/python/unittest/test_sparse_operator.py
Original file line number Diff line number Diff line change
Expand Up @@ -1374,8 +1374,8 @@ def check_sparse_nd_zeros_like(stype, shape):
check_sparse_nd_zeros_like('row_sparse', shape)
check_sparse_nd_zeros_like('csr', shape)

def test_sparse_sum_axis():
def test_variations():
def test_sparse_axis_operations():
def test_variations(func_name):
dim0 = 30
dim1 = 100
axes = [0, 1]
Expand All @@ -1385,21 +1385,23 @@ def test_variations():
csr_array = rand_ndarray(shape=shape, stype='csr', density=density)
dns = csr_array.tostype('default')
for axis in axes:
ret = mx.nd.sum(csr_array, axis=axis)
ret = func_name(csr_array, axis=axis)
assert ret.stype == 'default'
ret_expected = mx.nd.sum(dns, axis=axis)
ret_expected = func_name(dns, axis=axis)
assert_almost_equal(ret.asnumpy(), ret_expected.asnumpy())

def test_fallback(axis=0, keepdims=True, exclude=True):
def test_fallback(func_name, axis=0, keepdims=True, exclude=True):
dim0 = 30
dim1 = 100
shape = rand_shape_2d(dim0, dim1)
csr_array = rand_ndarray(shape=shape, stype='csr', density=0.01)
ret = mx.nd.sum(csr_array, axis=axis, keepdims=keepdims,
exclude=exclude)
ret= func_name(csr_array, axis=axis, keepdims=keepdims,
exclude=exclude)

test_variations()
test_fallback(axis=0, keepdims=True, exclude=True)
test_variations(mx.nd.sum)
test_fallback(mx.nd.sum, axis=0, keepdims=True, exclude=True)
test_variations(mx.nd.mean)
test_fallback(mx.nd.mean, axis=0, keepdims=True, exclude=True)

def test_sparse_square_sum():
if default_context().device_type == 'cpu':
Expand Down

0 comments on commit c2358f9

Please sign in to comment.