-
Notifications
You must be signed in to change notification settings - Fork 29
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Introduce Gradio for creating interactive and visual demo
- Loading branch information
Showing
1 changed file
with
254 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,254 @@ | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. | ||
|
||
|
||
import json | ||
import os | ||
|
||
import gradio as gr | ||
import uvicorn | ||
from fastapi import FastAPI | ||
|
||
from hugegraph_llm.llms.init_llm import LLMs | ||
from hugegraph_llm.operators.graph_rag_task import GraphRAG | ||
from hugegraph_llm.operators.kg_construction_task import KgBuilder | ||
from hugegraph_llm.utils.config import Config | ||
from hugegraph_llm.utils.constants import Constants | ||
from pyhugegraph.client import PyHugeClient | ||
|
||
|
||
def init_hg_test_data(): | ||
client = get_hg_client() | ||
schema = client.schema() | ||
schema.propertyKey("name").asText().ifNotExist().create() | ||
schema.propertyKey("birthDate").asText().ifNotExist().create() | ||
schema.vertexLabel("Person").properties( | ||
"name", "birthDate" | ||
).useCustomizeStringId().ifNotExist().create() | ||
schema.vertexLabel("Movie").properties("name").useCustomizeStringId().ifNotExist().create() | ||
schema.edgeLabel("ActedIn").sourceLabel("Person").targetLabel("Movie").ifNotExist().create() | ||
|
||
schema.indexLabel("PersonByName").onV("Person").by("name").secondary().ifNotExist().create() | ||
schema.indexLabel("MovieByName").onV("Movie").by("name").secondary().ifNotExist().create() | ||
|
||
graph = client.graph() | ||
graph.addVertex("Person", {"name": "Al Pacino", "birthDate": "1940-04-25"}, id="Al Pacino") | ||
graph.addVertex( | ||
"Person", | ||
{"name": "Robert De Niro", "birthDate": "1943-08-17"}, | ||
id="Robert De Niro", | ||
) | ||
graph.addVertex("Movie", {"name": "The Godfather"}, id="The Godfather") | ||
graph.addVertex("Movie", {"name": "The Godfather Part II"}, id="The Godfather Part II") | ||
graph.addVertex( | ||
"Movie", | ||
{"name": "The Godfather Coda The Death of Michael Corleone"}, | ||
id="The Godfather Coda The Death of Michael Corleone", | ||
) | ||
|
||
graph.addEdge("ActedIn", "Al Pacino", "The Godfather", {}) | ||
graph.addEdge("ActedIn", "Al Pacino", "The Godfather Part II", {}) | ||
graph.addEdge("ActedIn", "Al Pacino", "The Godfather Coda The Death of Michael Corleone", {}) | ||
graph.addEdge("ActedIn", "Robert De Niro", "The Godfather Part II", {}) | ||
schema.getSchema() | ||
graph.close() | ||
return { | ||
"vertex": ["Person", "Movie"], | ||
"edge": ["ActedIn"], | ||
"property": ["name", "birthDate"], | ||
"index": ["PersonByName", "MovieByName"], | ||
} | ||
|
||
|
||
def graph_rag(text): | ||
res = ( | ||
GraphRAG() | ||
.extract_keyword(text=text) | ||
.query_graph_for_rag() | ||
.synthesize_answer() | ||
.run(verbose=True) | ||
) | ||
return res | ||
|
||
|
||
def build_kg(text, schema, disambiguate_word_sense, commit_to_hugegraph): | ||
builder = KgBuilder(LLMs().get_llm()) | ||
# 判断 schema 是不是json结构 | ||
if schema: | ||
try: | ||
schema = json.loads(schema.strip()) | ||
builder.import_schema(from_user_defined=schema) | ||
except json.JSONDecodeError as e: | ||
print(e) | ||
builder.import_schema(from_hugegraph=schema) | ||
else: | ||
return "ERROR: please input schema." | ||
builder.extract_triples(text) | ||
if disambiguate_word_sense == "true": | ||
builder.disambiguate_word_sense() | ||
if commit_to_hugegraph == "true": | ||
builder.commit_to_hugegraph() | ||
return builder.run() | ||
|
||
|
||
def run_gremlin_query(query): | ||
res = get_hg_client().gremlin().exec(query) | ||
return res | ||
|
||
|
||
def get_hg_client(): | ||
config = Config(section=Constants.HUGEGRAPH_CONFIG) | ||
return PyHugeClient( | ||
config.get_graph_ip(), | ||
config.get_graph_port(), | ||
config.get_graph_name(), | ||
config.get_graph_user(), | ||
config.get_graph_pwd(), | ||
) | ||
|
||
|
||
def init_config( | ||
ip, port, user, pwd, graph, type, api_key, secret_key, llm_url, model_name, max_token | ||
): | ||
root_dir = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) | ||
config_file = os.path.join(root_dir, "config", "config.ini") | ||
|
||
config = Config(config_file=config_file, section="hugegraph") | ||
config.update_config({"ip": ip, "port": port, "user": user, "pwd": pwd, "graph": graph}) | ||
|
||
config = Config(config_file=config_file, section="llm") | ||
config.update_config( | ||
{ | ||
"type": type, | ||
"api_key": api_key, | ||
"secret_key": secret_key, | ||
"llm_url": llm_url, | ||
"model_name": model_name, | ||
"max_token": max_token, | ||
} | ||
) | ||
with open(config_file, "r", encoding="utf-8") as file: | ||
content = file.read() | ||
return content | ||
|
||
|
||
with gr.Blocks() as hugegraph_llm: | ||
gr.Markdown( | ||
"""# HugeGraph LLM Demo | ||
1. Set up the HugeGraph server.""" | ||
) | ||
with gr.Row(): | ||
inp = [ | ||
gr.Textbox(value="127.0.0.1", label="ip"), | ||
gr.Textbox(value="8080", label="port"), | ||
gr.Textbox(value="admin", label="user"), | ||
gr.Textbox(value="admin", label="pwd"), | ||
gr.Textbox(value="hugegraph", label="graph"), | ||
] | ||
gr.Markdown("2. Set up the LLM.") | ||
with gr.Row(): | ||
inp2 = [ | ||
gr.Textbox(value="ernie", label="type"), | ||
gr.Textbox(value="", label="api_key"), | ||
gr.Textbox(value="", label="secret_key"), | ||
gr.Textbox( | ||
value="https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/" | ||
"chat/completions_pro?access_token=", | ||
label="llm_url", | ||
), | ||
gr.Textbox(value="wenxin", label="model_name"), | ||
gr.Textbox(value="4000", label="max_token"), | ||
] | ||
with gr.Row(): | ||
out = gr.Textbox(label="Output") | ||
btn = gr.Button("Initialize configs") | ||
btn.click(fn=init_config, inputs=inp + inp2, outputs=out) # pylint: disable=no-member | ||
|
||
gr.Markdown( | ||
"""## 1. build knowledge graph | ||
- Text: The input text. | ||
- Schema: Accepts two types of text as below: | ||
- User-defined JSON format Schema. | ||
- Specify the name of the HugeGraph graph instance, and it will | ||
automatically extract the schema of the graph. | ||
- Disambiguate word sense: Whether to perform word sense disambiguation. | ||
- Commit to hugegraph: Whether to commit the constructed knowledge graph to the | ||
HugeGraph server. | ||
""" | ||
) | ||
TEXT = ( | ||
"Meet Sarah, a 30-year-old attorney, and her roommate, James, whom she's shared a home with" | ||
" since 2010. James, in his professional life, works as a journalist. Additionally, Sarah" | ||
" is the proud owner of the website www.sarahsplace.com, while James manages his own" | ||
" webpage, though the specific URL is not mentioned here. These two individuals, Sarah and" | ||
" James, have not only forged a strong personal bond as roommates but have also carved out" | ||
" their distinctive digital presence through their respective webpages, showcasing their" | ||
" varied interests and experiences." | ||
) | ||
|
||
SCHEMA = """{ | ||
"vertices": [ | ||
{"vertex_label": "person", "properties": ["name", "age", "occupation"]}, | ||
{"vertex_label": "webpage", "properties": ["name", "url"]} | ||
], | ||
"edges": [ | ||
{ | ||
"edge_label": "roommate", | ||
"source_vertex_label": "person", | ||
"target_vertex_label": "person", | ||
"properties": {} | ||
} | ||
] | ||
} | ||
""" | ||
|
||
with gr.Row(): | ||
inp = [ | ||
gr.Textbox(value=TEXT, label="Text"), | ||
gr.Textbox(value=SCHEMA, label="Schema"), | ||
gr.Textbox(value="false", label="Disambiguate word sense"), | ||
gr.Textbox(value="false", label="Commit to hugegraph"), | ||
] | ||
with gr.Row(): | ||
out = gr.Textbox(label="Output") | ||
btn = gr.Button("Build knowledge graph") | ||
btn.click(fn=build_kg, inputs=inp, outputs=out) # pylint: disable=no-member | ||
|
||
gr.Markdown("""## 2. Retrieval augmented generation by hugegraph""") | ||
with gr.Row(): | ||
inp = gr.Textbox(value="Tell me about Al Pacino.", label="Question") | ||
with gr.Row(): | ||
out = gr.Textbox(label="Answer") | ||
btn = gr.Button("Retrieval augmented generation") | ||
btn.click(fn=graph_rag, inputs=inp, outputs=out) # pylint: disable=no-member | ||
|
||
gr.Markdown("""## 3. Others """) | ||
with gr.Row(): | ||
inp = [] | ||
out = gr.Textbox(label="Output") | ||
btn = gr.Button("Initialize HugeGraph test data") | ||
btn.click(fn=init_hg_test_data, inputs=inp, outputs=out) # pylint: disable=no-member | ||
|
||
with gr.Row(): | ||
inp = gr.Textbox(value="g.V().limit(10)", label="Gremlin query") | ||
out = gr.Textbox(label="Output") | ||
btn = gr.Button("Run gremlin query on HugeGraph") | ||
btn.click(fn=run_gremlin_query, inputs=inp, outputs=out) # pylint: disable=no-member | ||
|
||
app = FastAPI() | ||
app = gr.mount_gradio_app(app, hugegraph_llm, path="/") | ||
uvicorn.run(app, host="0.0.0.0", port=8001) |