Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add parquet feature flag, enabled by default, and make parquet conditional #7745

Merged
merged 6 commits into from
Oct 25, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion datafusion-cli/Cargo.toml
Original file line number Diff line number Diff line change
Expand Up @@ -34,7 +34,7 @@ async-trait = "0.1.41"
aws-config = "0.55"
aws-credential-types = "0.55"
clap = { version = "3", features = ["derive", "cargo"] }
datafusion = { path = "../datafusion/core", version = "32.0.0", features = ["avro", "crypto_expressions", "encoding_expressions", "regex_expressions", "unicode_expressions", "compression"] }
datafusion = { path = "../datafusion/core", version = "32.0.0", features = ["avro", "crypto_expressions", "encoding_expressions", "parquet", "regex_expressions", "unicode_expressions", "compression"] }
dirs = "4.0.0"
env_logger = "0.9"
mimalloc = { version = "0.1", default-features = false }
Expand Down
3 changes: 1 addition & 2 deletions datafusion/common/Cargo.toml
Original file line number Diff line number Diff line change
Expand Up @@ -35,8 +35,7 @@ path = "src/lib.rs"
[features]
avro = ["apache-avro"]
backtrace = []
default = ["parquet"]
pyarrow = ["pyo3", "arrow/pyarrow"]
pyarrow = ["pyo3", "arrow/pyarrow", "parquet"]

[dependencies]
ahash = { version = "0.8", default-features = false, features = ["runtime-rng"] }
Expand Down
1 change: 1 addition & 0 deletions datafusion/common/src/test_util.rs
Original file line number Diff line number Diff line change
Expand Up @@ -180,6 +180,7 @@ pub fn arrow_test_data() -> String {
/// let filename = format!("{}/binary.parquet", testdata);
/// assert!(std::path::PathBuf::from(filename).exists());
/// ```
#[cfg(feature = "parquet")]
pub fn parquet_test_data() -> String {
match get_data_dir("PARQUET_TEST_DATA", "../../parquet-testing/data") {
Ok(pb) => pb.display().to_string(),
Expand Down
10 changes: 5 additions & 5 deletions datafusion/core/Cargo.toml
Original file line number Diff line number Diff line change
Expand Up @@ -39,11 +39,12 @@ avro = ["apache-avro", "num-traits", "datafusion-common/avro"]
backtrace = ["datafusion-common/backtrace"]
compression = ["xz2", "bzip2", "flate2", "zstd", "async-compression"]
crypto_expressions = ["datafusion-physical-expr/crypto_expressions", "datafusion-optimizer/crypto_expressions"]
default = ["crypto_expressions", "encoding_expressions", "regex_expressions", "unicode_expressions", "compression"]
default = ["crypto_expressions", "encoding_expressions", "regex_expressions", "unicode_expressions", "compression", "parquet"]
encoding_expressions = ["datafusion-physical-expr/encoding_expressions"]
# Used for testing ONLY: causes all values to hash to the same value (test for collisions)
force_hash_collisions = []
pyarrow = ["datafusion-common/pyarrow"]
parquet = ["datafusion-common/parquet", "dep:parquet"]
pyarrow = ["datafusion-common/pyarrow", "parquet"]
regex_expressions = ["datafusion-physical-expr/regex_expressions", "datafusion-optimizer/regex_expressions"]
serde = ["arrow-schema/serde"]
simd = ["arrow/simd"]
Expand All @@ -61,7 +62,7 @@ bytes = "1.4"
bzip2 = { version = "0.4.3", optional = true }
chrono = { workspace = true }
dashmap = "5.4.0"
datafusion-common = { path = "../common", version = "32.0.0", features = ["parquet", "object_store"] }
datafusion-common = { path = "../common", version = "32.0.0", features = ["object_store"], default-features = false }
datafusion-execution = { path = "../execution", version = "32.0.0" }
datafusion-expr = { path = "../expr", version = "32.0.0" }
datafusion-optimizer = { path = "../optimizer", version = "32.0.0", default-features = false }
Expand All @@ -80,7 +81,7 @@ num-traits = { version = "0.2", optional = true }
num_cpus = "1.13.0"
object_store = "0.7.0"
parking_lot = "0.12"
parquet = { workspace = true }
parquet = { workspace = true, optional = true }
percent-encoding = "2.2.0"
pin-project-lite = "^0.2.7"
rand = "0.8"
Expand All @@ -93,7 +94,6 @@ uuid = { version = "1.0", features = ["v4"] }
xz2 = { version = "0.1", optional = true }
zstd = { version = "0.13", optional = true, default-features = false }


[dev-dependencies]
async-trait = "0.1.53"
bigdecimal = "0.4.1"
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,9 @@

//! [`DataFrame`] API for building and executing query plans.

#[cfg(feature = "parquet")]
mod parquet;

use std::any::Any;
use std::sync::Arc;

Expand All @@ -27,15 +30,11 @@ use arrow::datatypes::{DataType, Field};
use async_trait::async_trait;
use datafusion_common::file_options::csv_writer::CsvWriterOptions;
use datafusion_common::file_options::json_writer::JsonWriterOptions;
use datafusion_common::file_options::parquet_writer::{
default_builder, ParquetWriterOptions,
};
use datafusion_common::parsers::CompressionTypeVariant;
use datafusion_common::{
DataFusionError, FileType, FileTypeWriterOptions, SchemaError, UnnestOptions,
};
use datafusion_expr::dml::CopyOptions;
use parquet::file::properties::WriterProperties;

use datafusion_common::{Column, DFSchema, ScalarValue};
use datafusion_expr::{
Expand Down Expand Up @@ -1067,40 +1066,6 @@ impl DataFrame {
DataFrame::new(self.session_state, plan).collect().await
}

/// Write a `DataFrame` to a Parquet file.
pub async fn write_parquet(
self,
path: &str,
options: DataFrameWriteOptions,
writer_properties: Option<WriterProperties>,
) -> Result<Vec<RecordBatch>, DataFusionError> {
if options.overwrite {
return Err(DataFusionError::NotImplemented(
"Overwrites are not implemented for DataFrame::write_parquet.".to_owned(),
));
}
match options.compression{
CompressionTypeVariant::UNCOMPRESSED => (),
_ => return Err(DataFusionError::Configuration("DataFrame::write_parquet method does not support compression set via DataFrameWriteOptions. Set parquet compression via writer_properties instead.".to_owned()))
}
let props = match writer_properties {
Some(props) => props,
None => default_builder(self.session_state.config_options())?.build(),
};
let file_type_writer_options =
FileTypeWriterOptions::Parquet(ParquetWriterOptions::new(props));
let copy_options = CopyOptions::WriterOptions(Box::new(file_type_writer_options));
let plan = LogicalPlanBuilder::copy_to(
self.plan,
path.into(),
FileType::PARQUET,
options.single_file_output,
copy_options,
)?
.build()?;
DataFrame::new(self.session_state, plan).collect().await
}

/// Executes a query and writes the results to a partitioned JSON file.
pub async fn write_json(
self,
Expand Down Expand Up @@ -1365,19 +1330,12 @@ mod tests {
WindowFunction,
};
use datafusion_physical_expr::expressions::Column;
use object_store::local::LocalFileSystem;
use parquet::basic::{BrotliLevel, GzipLevel, ZstdLevel};
use parquet::file::reader::FileReader;
use tempfile::TempDir;
use url::Url;

use crate::execution::context::SessionConfig;
use crate::execution::options::{CsvReadOptions, ParquetReadOptions};
use crate::physical_plan::ColumnarValue;
use crate::physical_plan::Partitioning;
use crate::physical_plan::PhysicalExpr;
use crate::test_util;
use crate::test_util::parquet_test_data;
use crate::test_util::{register_aggregate_csv, test_table, test_table_with_name};
use crate::{assert_batches_sorted_eq, execution::context::SessionContext};

use super::*;
Expand Down Expand Up @@ -1798,31 +1756,6 @@ mod tests {
Ok(ctx.sql(sql).await?.into_unoptimized_plan())
}

async fn test_table_with_name(name: &str) -> Result<DataFrame> {
let mut ctx = SessionContext::new();
register_aggregate_csv(&mut ctx, name).await?;
ctx.table(name).await
}

async fn test_table() -> Result<DataFrame> {
test_table_with_name("aggregate_test_100").await
}

async fn register_aggregate_csv(
ctx: &mut SessionContext,
table_name: &str,
) -> Result<()> {
let schema = test_util::aggr_test_schema();
let testdata = test_util::arrow_test_data();
ctx.register_csv(
table_name,
&format!("{testdata}/csv/aggregate_test_100.csv"),
CsvReadOptions::new().schema(schema.as_ref()),
)
.await?;
Ok(())
}

#[tokio::test]
async fn with_column() -> Result<()> {
let df = test_table().await?.select_columns(&["c1", "c2", "c3"])?;
Expand Down Expand Up @@ -2227,33 +2160,6 @@ mod tests {
Ok(())
}

#[tokio::test]
async fn filter_pushdown_dataframe() -> Result<()> {
let ctx = SessionContext::new();

ctx.register_parquet(
"test",
&format!("{}/alltypes_plain.snappy.parquet", parquet_test_data()),
ParquetReadOptions::default(),
)
.await?;

ctx.register_table("t1", ctx.table("test").await?.into_view())?;

let df = ctx
.table("t1")
.await?
.filter(col("id").eq(lit(1)))?
.select_columns(&["bool_col", "int_col"])?;

let plan = df.explain(false, false)?.collect().await?;
// Filters all the way to Parquet
let formatted = pretty::pretty_format_batches(&plan)?.to_string();
assert!(formatted.contains("FilterExec: id@0 = 1"));

Ok(())
}

#[tokio::test]
async fn cast_expr_test() -> Result<()> {
let df = test_table()
Expand Down Expand Up @@ -2538,53 +2444,4 @@ mod tests {

Ok(())
}

#[tokio::test]
async fn write_parquet_with_compression() -> Result<()> {
let test_df = test_table().await?;

let output_path = "file://local/test.parquet";
let test_compressions = vec![
parquet::basic::Compression::SNAPPY,
parquet::basic::Compression::LZ4,
parquet::basic::Compression::LZ4_RAW,
parquet::basic::Compression::GZIP(GzipLevel::default()),
parquet::basic::Compression::BROTLI(BrotliLevel::default()),
parquet::basic::Compression::ZSTD(ZstdLevel::default()),
];
for compression in test_compressions.into_iter() {
let df = test_df.clone();
let tmp_dir = TempDir::new()?;
let local = Arc::new(LocalFileSystem::new_with_prefix(&tmp_dir)?);
let local_url = Url::parse("file://local").unwrap();
let ctx = &test_df.session_state;
ctx.runtime_env().register_object_store(&local_url, local);
df.write_parquet(
output_path,
DataFrameWriteOptions::new().with_single_file_output(true),
Some(
WriterProperties::builder()
.set_compression(compression)
.build(),
),
)
.await?;

// Check that file actually used the specified compression
let file = std::fs::File::open(tmp_dir.into_path().join("test.parquet"))?;

let reader =
parquet::file::serialized_reader::SerializedFileReader::new(file)
.unwrap();

let parquet_metadata = reader.metadata();

let written_compression =
parquet_metadata.row_group(0).column(0).compression();

assert_eq!(written_compression, compression);
}

Ok(())
}
}
Loading
Loading