-
Notifications
You must be signed in to change notification settings - Fork 1.3k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
sum(distinct)
support
#2405
Merged
Merged
sum(distinct)
support
#2405
Changes from all commits
Commits
Show all changes
5 commits
Select commit
Hold shift + click to select a range
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,294 @@ | ||
// Licensed to the Apache Software Foundation (ASF) under one | ||
// or more contributor license agreements. See the NOTICE file | ||
// distributed with this work for additional information | ||
// regarding copyright ownership. The ASF licenses this file | ||
// to you under the Apache License, Version 2.0 (the | ||
// "License"); you may not use this file except in compliance | ||
// with the License. You may obtain a copy of the License at | ||
// | ||
// http://www.apache.org/licenses/LICENSE-2.0 | ||
// | ||
// Unless required by applicable law or agreed to in writing, | ||
// software distributed under the License is distributed on an | ||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
// KIND, either express or implied. See the License for the | ||
// specific language governing permissions and limitations | ||
// under the License. | ||
|
||
use crate::aggregate::sum; | ||
use crate::expressions::format_state_name; | ||
use arrow::datatypes::{DataType, Field}; | ||
use std::any::Any; | ||
use std::fmt::Debug; | ||
use std::sync::Arc; | ||
|
||
use ahash::RandomState; | ||
use arrow::array::{Array, ArrayRef}; | ||
use std::collections::HashSet; | ||
|
||
use crate::{AggregateExpr, PhysicalExpr}; | ||
use datafusion_common::ScalarValue; | ||
use datafusion_common::{DataFusionError, Result}; | ||
use datafusion_expr::Accumulator; | ||
|
||
/// Expression for a SUM(DISTINCT) aggregation. | ||
#[derive(Debug)] | ||
pub struct DistinctSum { | ||
/// Column name | ||
name: String, | ||
/// The DataType for the final sum | ||
data_type: DataType, | ||
/// The input arguments, only contains 1 item for sum | ||
exprs: Vec<Arc<dyn PhysicalExpr>>, | ||
} | ||
|
||
impl DistinctSum { | ||
/// Create a SUM(DISTINCT) aggregate function. | ||
pub fn new( | ||
exprs: Vec<Arc<dyn PhysicalExpr>>, | ||
name: String, | ||
data_type: DataType, | ||
) -> Self { | ||
Self { | ||
name, | ||
data_type, | ||
exprs, | ||
} | ||
} | ||
} | ||
|
||
impl AggregateExpr for DistinctSum { | ||
fn as_any(&self) -> &dyn Any { | ||
self | ||
} | ||
|
||
fn field(&self) -> Result<Field> { | ||
Ok(Field::new(&self.name, self.data_type.clone(), true)) | ||
} | ||
|
||
fn state_fields(&self) -> Result<Vec<Field>> { | ||
// State field is a List which stores items to rebuild hash set. | ||
Ok(vec![Field::new( | ||
&format_state_name(&self.name, "sum distinct"), | ||
DataType::List(Box::new(Field::new("item", self.data_type.clone(), true))), | ||
false, | ||
)]) | ||
} | ||
|
||
fn expressions(&self) -> Vec<Arc<dyn PhysicalExpr>> { | ||
self.exprs.clone() | ||
} | ||
|
||
fn name(&self) -> &str { | ||
&self.name | ||
} | ||
|
||
fn create_accumulator(&self) -> Result<Box<dyn Accumulator>> { | ||
Ok(Box::new(DistinctSumAccumulator::try_new(&self.data_type)?)) | ||
} | ||
} | ||
|
||
#[derive(Debug)] | ||
struct DistinctSumAccumulator { | ||
hash_values: HashSet<ScalarValue, RandomState>, | ||
data_type: DataType, | ||
} | ||
impl DistinctSumAccumulator { | ||
pub fn try_new(data_type: &DataType) -> Result<Self> { | ||
Ok(Self { | ||
hash_values: HashSet::default(), | ||
data_type: data_type.clone(), | ||
}) | ||
} | ||
|
||
fn update(&mut self, values: &[ScalarValue]) -> Result<()> { | ||
values.iter().for_each(|v| { | ||
// If the value is NULL, it is not included in the final sum. | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. 👍 |
||
if !v.is_null() { | ||
self.hash_values.insert(v.clone()); | ||
} | ||
}); | ||
|
||
Ok(()) | ||
} | ||
|
||
fn merge(&mut self, states: &[ScalarValue]) -> Result<()> { | ||
if states.is_empty() { | ||
return Ok(()); | ||
} | ||
|
||
states.iter().try_for_each(|state| match state { | ||
ScalarValue::List(Some(values), _) => self.update(values.as_ref()), | ||
_ => Err(DataFusionError::Internal(format!( | ||
"Unexpected accumulator state {:?}", | ||
state | ||
))), | ||
}) | ||
} | ||
} | ||
|
||
impl Accumulator for DistinctSumAccumulator { | ||
fn state(&self) -> Result<Vec<ScalarValue>> { | ||
// 1. Stores aggregate state in `ScalarValue::List` | ||
// 2. Constructs `ScalarValue::List` state from distinct numeric stored in hash set | ||
let state_out = { | ||
let mut distinct_values = Box::new(Vec::new()); | ||
let data_type = Box::new(self.data_type.clone()); | ||
self.hash_values | ||
.iter() | ||
.for_each(|distinct_value| distinct_values.push(distinct_value.clone())); | ||
vec![ScalarValue::List(Some(distinct_values), data_type)] | ||
}; | ||
Ok(state_out) | ||
} | ||
|
||
fn update_batch(&mut self, values: &[ArrayRef]) -> Result<()> { | ||
if values.is_empty() { | ||
return Ok(()); | ||
} | ||
|
||
let scalar_values = (0..values[0].len()) | ||
.map(|index| ScalarValue::try_from_array(&values[0], index)) | ||
.collect::<Result<Vec<_>>>()?; | ||
self.update(&scalar_values) | ||
} | ||
|
||
fn merge_batch(&mut self, states: &[ArrayRef]) -> Result<()> { | ||
if states.is_empty() { | ||
return Ok(()); | ||
} | ||
|
||
(0..states[0].len()).try_for_each(|index| { | ||
let v = states | ||
.iter() | ||
.map(|array| ScalarValue::try_from_array(array, index)) | ||
.collect::<Result<Vec<_>>>()?; | ||
self.merge(&v) | ||
}) | ||
} | ||
|
||
fn evaluate(&self) -> Result<ScalarValue> { | ||
let mut sum_value = ScalarValue::try_from(&self.data_type)?; | ||
self.hash_values.iter().for_each(|distinct_value| { | ||
sum_value = sum::sum(&sum_value, distinct_value).unwrap() | ||
}); | ||
Ok(sum_value) | ||
} | ||
} | ||
|
||
#[cfg(test)] | ||
mod tests { | ||
use super::*; | ||
use crate::expressions::col; | ||
use crate::expressions::tests::aggregate; | ||
use arrow::record_batch::RecordBatch; | ||
use arrow::{array::*, datatypes::*}; | ||
use datafusion_common::Result; | ||
|
||
fn run_update_batch( | ||
return_type: DataType, | ||
arrays: &[ArrayRef], | ||
) -> Result<(Vec<ScalarValue>, ScalarValue)> { | ||
let agg = DistinctSum::new(vec![], String::from("__col_name__"), return_type); | ||
|
||
let mut accum = agg.create_accumulator()?; | ||
accum.update_batch(arrays)?; | ||
|
||
Ok((accum.state()?, accum.evaluate()?)) | ||
} | ||
|
||
macro_rules! generic_test_sum_distinct { | ||
($ARRAY:expr, $DATATYPE:expr, $EXPECTED:expr, $EXPECTED_DATATYPE:expr) => {{ | ||
let schema = Schema::new(vec![Field::new("a", $DATATYPE, false)]); | ||
|
||
let batch = RecordBatch::try_new(Arc::new(schema.clone()), vec![$ARRAY])?; | ||
|
||
let agg = Arc::new(DistinctSum::new( | ||
vec![col("a", &schema)?], | ||
"count_distinct_a".to_string(), | ||
$EXPECTED_DATATYPE, | ||
)); | ||
let actual = aggregate(&batch, agg)?; | ||
let expected = ScalarValue::from($EXPECTED); | ||
|
||
assert_eq!(expected, actual); | ||
|
||
Ok(()) | ||
}}; | ||
} | ||
|
||
#[test] | ||
fn sum_distinct_update_batch() -> Result<()> { | ||
let array_int64: ArrayRef = Arc::new(Int64Array::from(vec![1, 1, 3])); | ||
let arrays = vec![array_int64]; | ||
let (states, result) = run_update_batch(DataType::Int64, &arrays)?; | ||
|
||
assert_eq!(states.len(), 1); | ||
assert_eq!(result, ScalarValue::Int64(Some(4))); | ||
|
||
Ok(()) | ||
} | ||
|
||
#[test] | ||
fn sum_distinct_i32_with_nulls() -> Result<()> { | ||
let array = Arc::new(Int32Array::from(vec![ | ||
Some(1), | ||
Some(1), | ||
None, | ||
Some(2), | ||
Some(2), | ||
Some(3), | ||
])); | ||
generic_test_sum_distinct!( | ||
array, | ||
DataType::Int32, | ||
ScalarValue::from(6i64), | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. 👍 |
||
DataType::Int64 | ||
) | ||
} | ||
|
||
#[test] | ||
fn sum_distinct_u32_with_nulls() -> Result<()> { | ||
let array: ArrayRef = Arc::new(UInt32Array::from(vec![ | ||
Some(1_u32), | ||
Some(1_u32), | ||
Some(3_u32), | ||
Some(3_u32), | ||
None, | ||
])); | ||
generic_test_sum_distinct!( | ||
array, | ||
DataType::UInt32, | ||
ScalarValue::from(4i64), | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. 👍 |
||
DataType::Int64 | ||
) | ||
} | ||
|
||
#[test] | ||
fn sum_distinct_f64() -> Result<()> { | ||
let array: ArrayRef = | ||
Arc::new(Float64Array::from(vec![1_f64, 1_f64, 3_f64, 3_f64, 3_f64])); | ||
generic_test_sum_distinct!( | ||
array, | ||
DataType::Float64, | ||
ScalarValue::from(4_f64), | ||
DataType::Float64 | ||
) | ||
} | ||
|
||
#[test] | ||
fn sum_distinct_decimal_with_nulls() -> Result<()> { | ||
let array: ArrayRef = Arc::new( | ||
(1..6) | ||
.map(|i| if i == 2 { None } else { Some(i % 2) }) | ||
.collect::<DecimalArray>() | ||
.with_precision_and_scale(35, 0)?, | ||
); | ||
generic_test_sum_distinct!( | ||
array, | ||
DataType::Decimal(35, 0), | ||
ScalarValue::Decimal128(Some(1), 38, 0), | ||
DataType::Decimal(38, 0) | ||
) | ||
} | ||
} |
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
👍