-
Notifications
You must be signed in to change notification settings - Fork 1.2k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
bench: add scalar regex match benchmarks
- Loading branch information
Showing
2 changed files
with
125 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,121 @@ | ||
// Licensed to the Apache Software Foundation (ASF) under one | ||
// or more contributor license agreements. See the NOTICE file | ||
// distributed with this work for additional information | ||
// regarding copyright ownership. The ASF licenses this file | ||
// to you under the Apache License, Version 2.0 (the | ||
// "License"); you may not use this file except in compliance | ||
// with the License. You may obtain a copy of the License at | ||
// | ||
// http://www.apache.org/licenses/LICENSE-2.0 | ||
// | ||
// Unless required by applicable law or agreed to in writing, | ||
// software distributed under the License is distributed on an | ||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
// KIND, either express or implied. See the License for the | ||
// specific language governing permissions and limitations | ||
// under the License. | ||
|
||
use std::sync::Arc; | ||
|
||
use arrow_array::{RecordBatch, StringArray}; | ||
use arrow_schema::{DataType, Field, Schema}; | ||
use criterion::{black_box, criterion_group, criterion_main, Criterion}; | ||
use datafusion_expr_common::operator::Operator; | ||
use datafusion_physical_expr::expressions::{binary, col, lit, scalar_regex_match}; | ||
use hashbrown::HashMap; | ||
use rand::distributions::{Alphanumeric, DistString}; | ||
|
||
/// make a record batch with one column and n rows | ||
/// this record batch is single string column is used for | ||
/// scalar regex match benchmarks | ||
fn make_record_batch(rows: usize, string_length: usize, schema: Schema) -> RecordBatch { | ||
let mut rng = rand::thread_rng(); | ||
let mut array = Vec::with_capacity(rows); | ||
for _ in 0..rows { | ||
let data_line = Alphanumeric.sample_string(&mut rng, string_length); | ||
array.push(Some(data_line)); | ||
} | ||
let array = StringArray::from(array); | ||
RecordBatch::try_new(Arc::new(schema), vec![Arc::new(array)]).unwrap() | ||
} | ||
|
||
fn scalar_regex_match_benchmark(c: &mut Criterion) { | ||
// make common schema | ||
let column = "string"; | ||
let schema = Schema::new(vec![Field::new(column, DataType::Utf8, true)]); | ||
|
||
// meke test record batch | ||
let test_batch = [ | ||
(10, make_record_batch(10, 100, schema.clone())), | ||
(100, make_record_batch(100, 100, schema.clone())), | ||
(1000, make_record_batch(1000, 100, schema.clone())), | ||
(2000, make_record_batch(2000, 100, schema.clone())), | ||
] | ||
.iter() | ||
.map(|(k, v)| (*k, v.clone())) | ||
.collect::<HashMap<_, _>>(); | ||
|
||
// string column | ||
let string_col = col(column, &schema).unwrap(); | ||
|
||
// some pattern literal | ||
let pattern_lit = [ | ||
("email".to_string(), lit(r"^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$")), | ||
("url".to_string(), lit(r"^(https?|ftp)://[-a-zA-Z0-9+&@#/%?=~_|!:,.;]*[-a-zA-Z0-9+&@#/%=~_|]$")), | ||
("ip".to_string(), lit(r"^((25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.){3}(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)$")), | ||
("phone".to_string(), lit(r"^(\+\d{1,2}\s?)?\(?\d{3}\)?[\s.-]?\d{3}[\s.-]?\d{4}$")), | ||
("zip_code".to_string(), lit(r"^\d{5}(?:[-\s]\d{4})?$")), | ||
].iter() | ||
.map(|(k, v)| (k.clone(), v.clone())) | ||
.collect::<HashMap<_, _>>(); | ||
|
||
for (name, regexp_lit) in pattern_lit.iter() { | ||
for (rows, batch) in test_batch.iter() { | ||
for iter in [10, 20, 50, 100] { | ||
// scalar regex match benchmarks | ||
let bench_name = format!( | ||
"scalar_regex_match_pattern_{}_rows_{}_iter_{}", | ||
name, rows, iter | ||
); | ||
c.bench_function(bench_name.as_str(), |b| { | ||
let expr = scalar_regex_match( | ||
false, | ||
false, | ||
string_col.clone(), | ||
regexp_lit.clone(), | ||
&schema, | ||
) | ||
.unwrap(); | ||
b.iter(|| { | ||
for _ in 0..iter { | ||
expr.evaluate(black_box(batch)).unwrap(); | ||
} | ||
}); | ||
}); | ||
|
||
// binary regex match benchmarks | ||
let bench_name = format!( | ||
"binary_regex_match_pattern_{}_rows_{}_iter_{}", | ||
name, rows, iter | ||
); | ||
c.bench_function(bench_name.as_str(), |b| { | ||
let expr = binary( | ||
string_col.clone(), | ||
Operator::RegexMatch, | ||
regexp_lit.clone(), | ||
&schema, | ||
) | ||
.unwrap(); | ||
b.iter(|| { | ||
for _ in 0..iter { | ||
expr.evaluate(black_box(batch)).unwrap(); | ||
} | ||
}); | ||
}); | ||
} | ||
} | ||
} | ||
} | ||
|
||
criterion_group!(benches, scalar_regex_match_benchmark); | ||
criterion_main!(benches); |