Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

ARROW-6669: [Rust] [DataFusion] Implement binary expression for physical plan #5478

Closed
wants to merge 5 commits into from
Closed
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
207 changes: 204 additions & 3 deletions rust/datafusion/src/execution/physical_plan/expressions.rs
Original file line number Diff line number Diff line change
Expand Up @@ -23,16 +23,18 @@ use std::sync::Arc;

use crate::error::{ExecutionError, Result};
use crate::execution::physical_plan::{Accumulator, AggregateExpr, PhysicalExpr};
use crate::logicalplan::ScalarValue;
use crate::logicalplan::{Operator, ScalarValue};
use arrow::array::{
ArrayRef, Float32Array, Float64Array, Int16Array, Int32Array, Int64Array, Int8Array,
UInt16Array, UInt32Array, UInt64Array, UInt8Array,
ArrayRef, BooleanArray, Float32Array, Float64Array, Int16Array, Int32Array,
Int64Array, Int8Array, UInt16Array, UInt32Array, UInt64Array, UInt8Array,
};
use arrow::array::{
Float32Builder, Float64Builder, Int16Builder, Int32Builder, Int64Builder,
Int8Builder, UInt16Builder, UInt32Builder, UInt64Builder, UInt8Builder,
};
use arrow::compute::kernels::boolean::{and, or};
use arrow::compute::kernels::cast::cast;
use arrow::compute::kernels::comparison::{eq, gt, gt_eq, lt, lt_eq, neq};
use arrow::datatypes::{DataType, Schema};
use arrow::record_batch::RecordBatch;

Expand Down Expand Up @@ -197,6 +199,140 @@ pub fn sum(expr: Arc<dyn PhysicalExpr>) -> Arc<dyn AggregateExpr> {
Arc::new(Sum::new(expr))
}

/// Invoke a compute kernel on a pair of arrays
macro_rules! compute_op {
($LEFT:expr, $RIGHT:expr, $OP:ident, $DT:ident) => {{
let ll = $LEFT
.as_any()
.downcast_ref::<$DT>()
.expect("compute_op failed to downcast array");
let rr = $RIGHT
.as_any()
.downcast_ref::<$DT>()
.expect("compute_op failed to downcast array");
Ok(Arc::new($OP(&ll, &rr)?))
}};
}

/// Invoke a compute kernel on a pair of arrays
macro_rules! comparison_op {
($LEFT:expr, $RIGHT:expr, $OP:ident) => {{
match $LEFT.data_type() {
DataType::Int8 => compute_op!($LEFT, $RIGHT, $OP, Int8Array),
DataType::Int16 => compute_op!($LEFT, $RIGHT, $OP, Int16Array),
DataType::Int32 => compute_op!($LEFT, $RIGHT, $OP, Int32Array),
DataType::Int64 => compute_op!($LEFT, $RIGHT, $OP, Int64Array),
DataType::UInt8 => compute_op!($LEFT, $RIGHT, $OP, UInt8Array),
DataType::UInt16 => compute_op!($LEFT, $RIGHT, $OP, UInt16Array),
DataType::UInt32 => compute_op!($LEFT, $RIGHT, $OP, UInt32Array),
DataType::UInt64 => compute_op!($LEFT, $RIGHT, $OP, UInt64Array),
DataType::Float32 => compute_op!($LEFT, $RIGHT, $OP, Float32Array),
DataType::Float64 => compute_op!($LEFT, $RIGHT, $OP, Float64Array),
other => Err(ExecutionError::General(format!(
"Unsupported data type {:?}",
other
))),
}
}};
}

/// Invoke a boolean kernel on a pair of arrays
macro_rules! boolean_op {
($LEFT:expr, $RIGHT:expr, $OP:ident) => {{
let ll = $LEFT
.as_any()
.downcast_ref::<BooleanArray>()
.expect("boolean_op failed to downcast array");
let rr = $RIGHT
.as_any()
.downcast_ref::<BooleanArray>()
.expect("boolean_op failed to downcast array");
Ok(Arc::new($OP(&ll, &rr)?))
}};
}
/// Binary expression
pub struct BinaryExpr {
left: Arc<dyn PhysicalExpr>,
op: Operator,
right: Arc<dyn PhysicalExpr>,
}

impl BinaryExpr {
/// Create new binary expression
pub fn new(
left: Arc<dyn PhysicalExpr>,
op: Operator,
right: Arc<dyn PhysicalExpr>,
) -> Self {
Self { left, op, right }
}
}

impl PhysicalExpr for BinaryExpr {
fn name(&self) -> String {
format!("{:?}", self.op)
}

fn data_type(&self, input_schema: &Schema) -> Result<DataType> {
self.left.data_type(input_schema)
}

fn evaluate(&self, batch: &RecordBatch) -> Result<ArrayRef> {
let left = self.left.evaluate(batch)?;
let right = self.right.evaluate(batch)?;
if left.data_type() != right.data_type() {
return Err(ExecutionError::General(format!(
"Cannot evaluate binary expression {:?} with types {:?} and {:?}",
self.op,
left.data_type(),
right.data_type()
)));
}
match &self.op {
Operator::Lt => comparison_op!(left, right, lt),
Operator::LtEq => comparison_op!(left, right, lt_eq),
Operator::Gt => comparison_op!(left, right, gt),
Operator::GtEq => comparison_op!(left, right, gt_eq),
Operator::Eq => comparison_op!(left, right, eq),
Operator::NotEq => comparison_op!(left, right, neq),
Operator::And => {
if left.data_type() == &DataType::Boolean {
boolean_op!(left, right, and)
} else {
return Err(ExecutionError::General(format!(
"Cannot evaluate binary expression {:?} with types {:?} and {:?}",
self.op,
left.data_type(),
right.data_type()
)));
}
}
Operator::Or => {
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

It's a shame this has to be repeated instead of using Operator::And | Operator::Or

if left.data_type() == &DataType::Boolean {
boolean_op!(left, right, or)
} else {
return Err(ExecutionError::General(format!(
"Cannot evaluate binary expression {:?} with types {:?} and {:?}",
self.op,
left.data_type(),
right.data_type()
)));
}
}
_ => Err(ExecutionError::General("Unsupported operator".to_string())),
}
}
}

/// Create a binary expression
pub fn binary(
l: Arc<dyn PhysicalExpr>,
op: Operator,
r: Arc<dyn PhysicalExpr>,
) -> Arc<dyn PhysicalExpr> {
Arc::new(BinaryExpr::new(l, op, r))
}

/// CAST expression casts an expression to a specific data type
pub struct CastExpr {
/// The expression to cast
Expand Down Expand Up @@ -335,6 +471,71 @@ mod tests {
use arrow::array::BinaryArray;
use arrow::datatypes::*;

#[test]
fn binary_comparison() -> Result<()> {
let schema = Schema::new(vec![
Field::new("a", DataType::Int32, false),
Field::new("b", DataType::Int32, false),
]);
let a = Int32Array::from(vec![1, 2, 3, 4, 5]);
let b = Int32Array::from(vec![1, 2, 4, 8, 16]);
let batch = RecordBatch::try_new(
Arc::new(schema.clone()),
vec![Arc::new(a), Arc::new(b)],
)?;

// expression: "a < b"
let lt = binary(col(0), Operator::Lt, col(1));
let result = lt.evaluate(&batch)?;
assert_eq!(result.len(), 5);

let expected = vec![false, false, true, true, true];
let result = result
.as_any()
.downcast_ref::<BooleanArray>()
.expect("failed to downcast to BooleanArray");
for i in 0..5 {
assert_eq!(result.value(i), expected[i]);
}

Ok(())
}

#[test]
fn binary_nested() -> Result<()> {
let schema = Schema::new(vec![
Field::new("a", DataType::Int32, false),
Field::new("b", DataType::Int32, false),
]);
let a = Int32Array::from(vec![2, 4, 6, 8, 10]);
let b = Int32Array::from(vec![2, 5, 4, 8, 8]);
let batch = RecordBatch::try_new(
Arc::new(schema.clone()),
vec![Arc::new(a), Arc::new(b)],
)?;

// expression: "a < b OR a == b"
let expr = binary(
binary(col(0), Operator::Lt, col(1)),
Operator::Or,
binary(col(0), Operator::Eq, col(1)),
);
let result = expr.evaluate(&batch)?;
assert_eq!(result.len(), 5);

let expected = vec![true, true, false, true, false];
let result = result
.as_any()
.downcast_ref::<BooleanArray>()
.expect("failed to downcast to BooleanArray");
for i in 0..5 {
print!("{}", i);
assert_eq!(result.value(i), expected[i]);
}

Ok(())
}

#[test]
fn literal_i32() -> Result<()> {
// create an arbitrary record bacth
Expand Down