Skip to content

Commit

Permalink
ARROW-18062: [R] error in CI jobs for R 3.5 and 3.6 when R package be…
Browse files Browse the repository at this point in the history
…ing installed (#14424)

Not sure why this behavior would differ between R versions, but it makes sense to move the UDF registration to after the binding registry is created and only do it if slice_sample() is called.

Authored-by: Neal Richardson <[email protected]>
Signed-off-by: Neal Richardson <[email protected]>
  • Loading branch information
nealrichardson authored Oct 15, 2022
1 parent 99b4092 commit f0cf5c2
Show file tree
Hide file tree
Showing 3 changed files with 16 additions and 14 deletions.
12 changes: 0 additions & 12 deletions r/R/dplyr-funcs.R
Original file line number Diff line number Diff line change
Expand Up @@ -139,7 +139,6 @@ call_binding_agg <- function(fun_name, ...) {
agg_funcs[[fun_name]](...)
}

#' @importFrom stats runif
create_binding_cache <- function() {
# Called in .onLoad()
.cache$docs <- list()
Expand All @@ -164,17 +163,6 @@ create_binding_cache <- function() {
register_bindings_type()
register_bindings_augmented()

# HACK because random() doesn't work (ARROW-17974)
register_scalar_function(
"_random_along",
function(context, x) {
Array$create(runif(length(x)))
},
in_type = schema(x = boolean()),
out_type = float64(),
auto_convert = FALSE
)

# We only create the cache for nse_funcs and not agg_funcs
.cache$functions <- c(as.list(nse_funcs), arrow_funcs)
}
Expand Down
14 changes: 13 additions & 1 deletion r/R/dplyr-slice.R
Original file line number Diff line number Diff line change
Expand Up @@ -86,6 +86,7 @@ slice_max.arrow_dplyr_query <- function(.data, order_by, ..., n, prop, with_ties
}
slice_max.Dataset <- slice_max.ArrowTabular <- slice_max.RecordBatchReader <- slice_max.arrow_dplyr_query

#' @importFrom stats runif
slice_sample.arrow_dplyr_query <- function(.data,
...,
n,
Expand Down Expand Up @@ -116,10 +117,21 @@ slice_sample.arrow_dplyr_query <- function(.data,
if (prop < 1) {
.data <- as_adq(.data)
# TODO(ARROW-17974): use Expression$create("random") instead of UDF hack
# HACK: use our UDF to generate random. It needs an input column because
# HACK: use a UDF to generate random. It needs an input column because
# nullary functions don't work, and that column has to be typed. We've
# chosen boolean() type because it's compact and can always be created:
# pick any column and do is.na, that will be boolean.
if (is.null(.cache$functions[["_random_along"]])) {
register_scalar_function(
"_random_along",
function(context, x) {
Array$create(runif(length(x)))
},
in_type = schema(x = boolean()),
out_type = float64(),
auto_convert = FALSE
)
}
# TODO: get an actual FieldRef because the first col could be derived
ref <- Expression$create("is_null", .data$selected_columns[[1]])
expr <- Expression$create("_random_along", ref) < prop
Expand Down
4 changes: 3 additions & 1 deletion r/tests/testthat/test-dplyr-slice.R
Original file line number Diff line number Diff line change
Expand Up @@ -99,8 +99,10 @@ test_that("slice_sample, ungrouped", {
"weight_by"
)

# Let's not take any chances on random failures
skip_on_cran()
# Because this is random (and we only have 10 rows), try several times
for (i in 1:10) {
for (i in 1:50) {
sampled_prop <- tab %>%
slice_sample(prop = .2) %>%
collect() %>%
Expand Down

0 comments on commit f0cf5c2

Please sign in to comment.