-
Notifications
You must be signed in to change notification settings - Fork 14.5k
This issue was moved to a discussion.
You can continue the conversation there. Go to discussion →
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Airflow version: 2.3.3 RuntimeError: Unable to find any timezone configuration #42558
Comments
Thanks for opening your first issue here! Be sure to follow the issue template! If you are willing to raise PR to address this issue please do so, no need to wait for approval. |
env:
Have you tried this one ?? |
Version 2.3.3 of Airflow is pretty pretty old. Have you considered upgrading to a more recent version? |
We have received the lab with pre-installed airflow, and will check with
the team if the airflow can be upgraded to the latest version.
But don't we have a solution for the above issue?
Thanks,
Prem
…On Tue, 1 Oct 2024 at 02:12, Jens Scheffler ***@***.***> wrote:
Version 2.3.3 of Airflow is pretty pretty old. Have you considered
upgrading to a more recent version?
—
Reply to this email directly, view it on GitHub
<#42558 (comment)>,
or unsubscribe
<https://github.com/notifications/unsubscribe-auth/ACDW4VCHKWMKOYZGF5SICDTZZGZTDAVCNFSM6AAAAABPAT7ZVSVHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMZDGOBUGEYDQOBYGA>
.
You are receiving this because you authored the thread.Message ID:
***@***.***>
|
I checked the config default_timezone = utc |
Re-reading the stack trace there is something seriously wrog with your system anyway. The error is rooted becasue the webser attempts to render an error message that the scheduler in unhealty. Are you sure that the Note that the upper case version |
Thank you Jens for the reply. Here are my inputs to your asks.
1. I am using a single node server.
2. Here is the config list
***@***.***:~# airflow config list|grep timezone
default_timezone = utc
default_ui_timezone = UTC
***@***.***:~#
FYI More log of scheduler and web server attached. Please let me know if
you have any details you might need from the host node.
Regards,
Prem
On Wed, 2 Oct 2024 at 00:37, Jens Scheffler ***@***.***> wrote:
Re-reading the stack trace there is something seriously wrog with your
system anyway. The error is rooted becasue the webser attempts to render an
error message that the scheduler in unhealty.
Are you sure that the default_timezone is set consistently across all
nodes? Looking at the configuration reference utcis actually the default
(see
https://airflow.apache.org/docs/apache-airflow/2.3.3/configurations-ref.html
)
Note that the upper case version AIRFLOW__CORE__... in your config is the
version to over-ride the CFG file from ENV variables. To debug what
actually is used, can you open a shell i nthe context of the webserver and
run airflow config list on the command line and check which value is
active?
—
Reply to this email directly, view it on GitHub
<#42558 (comment)>,
or unsubscribe
<https://github.com/notifications/unsubscribe-auth/ACDW4VB7Q75HTOUIBZVPZBDZZLXFHAVCNFSM6AAAAABPAT7ZVSVHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMZDGOBWG42TINBRGU>
.
You are receiving this because you authored the thread.Message ID:
***@***.***>
***@***.***:~# airflow config list
[core]
dags_folder = /home/airflow/dags
hostname_callable = socket.getfqdn
default_timezone = utc
executor = SequentialExecutor
parallelism = 32
max_active_tasks_per_dag = 16
dags_are_paused_at_creation = True
max_active_runs_per_dag = 16
load_examples = True
plugins_folder = /home/airflow/plugins
execute_tasks_new_python_interpreter = False
fernet_key =
donot_pickle = True
dagbag_import_timeout = 30.0
dagbag_import_error_tracebacks = True
dagbag_import_error_traceback_depth = 2
dag_file_processor_timeout = 50
task_runner = StandardTaskRunner
default_impersonation =
security =
unit_test_mode = False
enable_xcom_pickling = False
killed_task_cleanup_time = 60
dag_run_conf_overrides_params = True
dag_discovery_safe_mode = True
dag_ignore_file_syntax = regexp
default_task_retries = 0
default_task_weight_rule = downstream
default_task_execution_timeout =
min_serialized_dag_update_interval = 30
compress_serialized_dags = False
min_serialized_dag_fetch_interval = 10
max_num_rendered_ti_fields_per_task = 30
check_slas = True
xcom_backend = airflow.models.xcom.BaseXCom
lazy_load_plugins = True
lazy_discover_providers = True
hide_sensitive_var_conn_fields = True
sensitive_var_conn_names =
default_pool_task_slot_count = 128
max_map_length = 1024
AIRFLOW__CORE__DEFAULT_TIMEZONE = UTC
[database]
sql_alchemy_conn = sqlite:////home/airflow/airflow.db
sql_engine_encoding = utf-8
sql_alchemy_pool_enabled = True
sql_alchemy_pool_size = 5
sql_alchemy_max_overflow = 10
sql_alchemy_pool_recycle = 1800
sql_alchemy_pool_pre_ping = True
sql_alchemy_schema =
load_default_connections = True
max_db_retries = 3
[logging]
base_log_folder = /home/airflow/logs
remote_logging = False
remote_log_conn_id =
google_key_path =
remote_base_log_folder =
encrypt_s3_logs = False
logging_level = INFO
celery_logging_level =
fab_logging_level = WARNING
logging_config_class =
colored_console_log = True
colored_log_format = [%(blue)s%(asctime)s%(reset)s] {%(blue)s%(filename)s:%(reset)s%(lineno)d} %(log_color)s%(levelname)s%(reset)s - %(log_color)s%(message)s%(reset)s
colored_formatter_class = airflow.utils.log.colored_log.CustomTTYColoredFormatter
log_format = [%(asctime)s] {%(filename)s:%(lineno)d} %(levelname)s - %(message)s
simple_log_format = %(asctime)s %(levelname)s - %(message)s
task_log_prefix_template =
log_filename_template = dag_id={{ ti.dag_id }}/run_id={{ ti.run_id }}/task_id={{ ti.task_id }}/{% if ti.map_index >= 0 %}map_index={{ ti.map_index }}/{% endif %}attempt={{ try_number }}.log
log_processor_filename_template = {{ filename }}.log
dag_processor_manager_log_location = /home/airflow/logs/dag_processor_manager/dag_processor_manager.log
task_log_reader = task
extra_logger_names =
worker_log_server_port = 8793
[metrics]
statsd_on = False
statsd_host = localhost
statsd_port = 8125
statsd_prefix = airflow
statsd_allow_list =
stat_name_handler =
statsd_datadog_enabled = False
statsd_datadog_tags =
[secrets]
backend =
backend_kwargs =
[cli]
api_client = airflow.api.client.local_client
endpoint_url = http://localhost:8080
[debug]
fail_fast = False
[api]
enable_experimental_api = False
auth_backends = airflow.api.auth.backend.session
maximum_page_limit = 100
fallback_page_limit = 100
google_oauth2_audience =
google_key_path =
access_control_allow_headers =
access_control_allow_methods =
access_control_allow_origins =
[lineage]
backend =
[atlas]
sasl_enabled = False
host =
port = 21000
username =
password =
[operators]
default_owner = airflow
default_cpus = 1
default_ram = 512
default_disk = 512
default_gpus = 0
default_queue = default
allow_illegal_arguments = False
[hive]
default_hive_mapred_queue =
[webserver]
base_url = http://localhost:8080
default_ui_timezone = UTC
web_server_host = 0.0.0.0
web_server_port = 6007
web_server_ssl_cert =
web_server_ssl_key =
session_backend = database
web_server_master_timeout = 120
web_server_worker_timeout = 120
worker_refresh_batch_size = 1
worker_refresh_interval = 6000
reload_on_plugin_change = False
secret_key = CbGpipwchu6Dg00sg5m0ZA==
workers = 4
worker_class = sync
access_logfile = -
error_logfile = -
access_logformat =
expose_config = False
expose_hostname = True
expose_stacktrace = True
dag_default_view = grid
dag_orientation = LR
log_fetch_timeout_sec = 5
log_fetch_delay_sec = 2
log_auto_tailing_offset = 30
log_animation_speed = 1000
hide_paused_dags_by_default = False
page_size = 100
navbar_color = #fff
default_dag_run_display_number = 25
enable_proxy_fix = False
proxy_fix_x_for = 1
proxy_fix_x_proto = 1
proxy_fix_x_host = 1
proxy_fix_x_port = 1
proxy_fix_x_prefix = 1
cookie_secure = False
cookie_samesite = Lax
default_wrap = False
x_frame_enabled = True
show_recent_stats_for_completed_runs = True
update_fab_perms = True
session_lifetime_minutes = 43200
instance_name_has_markup = False
auto_refresh_interval = 3
warn_deployment_exposure = True
audit_view_excluded_events = gantt,landing_times,tries,duration,calendar,graph,grid,tree,tree_data
[email]
email_backend = airflow.utils.email.send_email_smtp
email_conn_id = smtp_default
default_email_on_retry = True
default_email_on_failure = True
[smtp]
smtp_host = localhost
smtp_starttls = True
smtp_ssl = False
smtp_port = 25
smtp_mail_from = ***@***.***
smtp_timeout = 30
smtp_retry_limit = 5
[sentry]
sentry_on = False
sentry_dsn =
[local_kubernetes_executor]
kubernetes_queue = kubernetes
[celery_kubernetes_executor]
kubernetes_queue = kubernetes
[celery]
celery_app_name = airflow.executors.celery_executor
worker_concurrency = 16
worker_prefetch_multiplier = 1
worker_enable_remote_control = True
worker_umask = 0o077
broker_url = redis://redis:6379/0
result_backend = ***@***.***/airflow
flower_host = 0.0.0.0
flower_url_prefix =
flower_port = 5555
flower_basic_auth =
sync_parallelism = 0
celery_config_options = airflow.config_templates.default_celery.DEFAULT_CELERY_CONFIG
ssl_active = False
ssl_key =
ssl_cert =
ssl_cacert =
pool = prefork
operation_timeout = 1.0
task_track_started = True
task_adoption_timeout = 600
stalled_task_timeout = 0
task_publish_max_retries = 3
worker_precheck = False
[celery_broker_transport_options]
[dask]
cluster_address = 127.0.0.1:8786
tls_ca =
tls_cert =
tls_key =
[scheduler]
job_heartbeat_sec = 5
scheduler_heartbeat_sec = 5
num_runs = -1
scheduler_idle_sleep_time = 1
min_file_process_interval = 30
deactivate_stale_dags_interval = 60
dag_dir_list_interval = 300
print_stats_interval = 30
pool_metrics_interval = 5.0
scheduler_health_check_threshold = 30
orphaned_tasks_check_interval = 300.0
child_process_log_directory = /home/airflow/logs/scheduler
scheduler_zombie_task_threshold = 300
zombie_detection_interval = 10.0
catchup_by_default = True
ignore_first_depends_on_past_by_default = True
max_tis_per_query = 512
use_row_level_locking = True
max_dagruns_to_create_per_loop = 10
max_dagruns_per_loop_to_schedule = 20
schedule_after_task_execution = True
parsing_processes = 2
file_parsing_sort_mode = modified_time
standalone_dag_processor = False
max_callbacks_per_loop = 20
use_job_schedule = True
allow_trigger_in_future = False
dependency_detector = airflow.serialization.serialized_objects.DependencyDetector
trigger_timeout_check_interval = 15
[triggerer]
default_capacity = 1000
[kerberos]
ccache = /tmp/airflow_krb5_ccache
principal = airflow
reinit_frequency = 3600
kinit_path = kinit
keytab = airflow.keytab
forwardable = True
include_ip = True
[github_enterprise]
api_rev = v3
[elasticsearch]
host =
log_id_template = {dag_id}-{task_id}-{run_id}-{map_index}-{try_number}
end_of_log_mark = end_of_log
frontend =
write_stdout = False
json_format = False
json_fields = asctime, filename, lineno, levelname, message
host_field = host
offset_field = offset
[elasticsearch_configs]
use_ssl = False
verify_certs = True
[kubernetes]
pod_template_file =
worker_container_repository =
worker_container_tag =
namespace = default
delete_worker_pods = True
delete_worker_pods_on_failure = False
worker_pods_creation_batch_size = 1
multi_namespace_mode = False
in_cluster = True
kube_client_request_args =
delete_option_kwargs =
enable_tcp_keepalive = True
tcp_keep_idle = 120
tcp_keep_intvl = 30
tcp_keep_cnt = 6
verify_ssl = True
worker_pods_pending_timeout = 300
worker_pods_pending_timeout_check_interval = 120
worker_pods_queued_check_interval = 60
worker_pods_pending_timeout_batch_size = 100
[sensors]
default_timeout = 604800
[smart_sensor]
use_smart_sensor = False
shard_code_upper_limit = 10000
shards = 5
sensors_enabled = NamedHivePartitionSensor
***@***.***:~# airflow config list|grep time
default_timezone = utc
dagbag_import_timeout = 30.0
dag_file_processor_timeout = 50
killed_task_cleanup_time = 60
default_task_execution_timeout =
colored_log_format = [%(blue)s%(asctime)s%(reset)s] {%(blue)s%(filename)s:%(reset)s%(lineno)d} %(log_color)s%(levelname)s%(reset)s - %(log_color)s%(message)s%(reset)s
log_format = [%(asctime)s] {%(filename)s:%(lineno)d} %(levelname)s - %(message)s
simple_log_format = %(asctime)s %(levelname)s - %(message)s
default_ui_timezone = UTC
web_server_master_timeout = 120
web_server_worker_timeout = 120
log_fetch_timeout_sec = 5
session_lifetime_minutes = 43200
audit_view_excluded_events = gantt,landing_times,tries,duration,calendar,graph,grid,tree,tree_data
smtp_timeout = 30
operation_timeout = 1.0
task_adoption_timeout = 600
stalled_task_timeout = 0
scheduler_idle_sleep_time = 1
file_parsing_sort_mode = modified_time
trigger_timeout_check_interval = 15
json_fields = asctime, filename, lineno, levelname, message
worker_pods_pending_timeout = 300
worker_pods_pending_timeout_check_interval = 120
worker_pods_pending_timeout_batch_size = 100
default_timeout = 604800
***@***.***:~# airflow config list|grep timezone
default_timezone = utc
default_ui_timezone = UTC
***@***.***:~# airflow webserver --port 6007
____________ _____________
____ |__( )_________ __/__ /________ __
____ /| |_ /__ ___/_ /_ __ /_ __ \_ | /| / /
___ ___ | / _ / _ __/ _ / / /_/ /_ |/ |/ /
_/_/ |_/_/ /_/ /_/ /_/ \____/____/|__/
Running the Gunicorn Server with:
Workers: 4 sync
Host: 0.0.0.0:6007
Timeout: 120
Logfiles: - -
Access Logformat:
=================================================================
[2024-10-02 00:14:25 +0000] [1730] [INFO] Starting gunicorn 20.1.0
[2024-10-02 00:14:26 +0000] [1730] [INFO] Listening at: http://0.0.0.0:6007 (1730)
[2024-10-02 00:14:26 +0000] [1730] [INFO] Using worker: sync
[2024-10-02 00:14:26 +0000] [1733] [INFO] Booting worker with pid: 1733
[2024-10-02 00:14:26 +0000] [1734] [INFO] Booting worker with pid: 1734
[2024-10-02 00:14:26 +0000] [1735] [INFO] Booting worker with pid: 1735
[2024-10-02 00:14:26 +0000] [1736] [INFO] Booting worker with pid: 1736
10.232.204.18 - - [02/Oct/2024:00:14:37 +0000] "GET / HTTP/1.1" 302 197 "https://jarvislabs.ai/" "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/129.0.0.0 Safari/537.36"
/opt/conda/lib/python3.8/site-packages/airflow/www/views.py:889 SADeprecationWarning: DISTINCT ON is currently supported only by the PostgreSQL dialect. Use of DISTINCT ON for other backends is currently silently ignored, however this usage is deprecated, and will raise CompileError in a future release for all backends that do not support this syntax.
[2024-10-02 00:14:37,965] {app.py:1449} ERROR - Exception on /home [GET]
Traceback (most recent call last):
File "/opt/conda/lib/python3.8/site-packages/flask/app.py", line 2073, in wsgi_app
response = self.full_dispatch_request()
File "/opt/conda/lib/python3.8/site-packages/flask/app.py", line 1519, in full_dispatch_request
rv = self.handle_user_exception(e)
File "/opt/conda/lib/python3.8/site-packages/flask/app.py", line 1517, in full_dispatch_request
rv = self.dispatch_request()
File "/opt/conda/lib/python3.8/site-packages/flask/app.py", line 1503, in dispatch_request
return self.ensure_sync(self.view_functions[rule.endpoint])(**req.view_args)
File "/opt/conda/lib/python3.8/site-packages/airflow/www/auth.py", line 46, in decorated
return func(*args, **kwargs)
File "/opt/conda/lib/python3.8/site-packages/airflow/www/views.py", line 964, in index
return self.render_template(
File "/opt/conda/lib/python3.8/site-packages/airflow/www/views.py", line 709, in render_template
return super().render_template(
File "/opt/conda/lib/python3.8/site-packages/flask_appbuilder/baseviews.py", line 322, in render_template
return render_template(
File "/opt/conda/lib/python3.8/site-packages/flask/templating.py", line 154, in render_template
return _render(
File "/opt/conda/lib/python3.8/site-packages/flask/templating.py", line 128, in _render
rv = template.render(context)
File "/opt/conda/lib/python3.8/site-packages/jinja2/environment.py", line 1291, in render
self.environment.handle_exception()
File "/opt/conda/lib/python3.8/site-packages/jinja2/environment.py", line 925, in handle_exception
raise rewrite_traceback_stack(source=source)
File "/opt/conda/lib/python3.8/site-packages/airflow/www/templates/airflow/dags.html", line 43, in top-level template code
{% elif curr_ordering_direction == 'asc' and request.args.get('sorting_key') == attribute_name %}
File "/opt/conda/lib/python3.8/site-packages/airflow/www/templates/airflow/main.html", line 21, in top-level template code
{% from 'airflow/_messages.html' import show_message %}
File "/opt/conda/lib/python3.8/site-packages/flask_appbuilder/templates/appbuilder/baselayout.html", line 2, in top-level template code
{% import 'appbuilder/baselib.html' as baselib %}
File "/opt/conda/lib/python3.8/site-packages/flask_appbuilder/templates/appbuilder/init.html", line 37, in top-level template code
{% block body %}
File "/opt/conda/lib/python3.8/site-packages/flask_appbuilder/templates/appbuilder/baselayout.html", line 16, in block 'body'
{% block messages %}
File "/opt/conda/lib/python3.8/site-packages/airflow/www/templates/airflow/dags.html", line 104, in block 'messages'
{{ super() }}
File "/opt/conda/lib/python3.8/site-packages/airflow/www/templates/airflow/main.html", line 62, in block 'messages'
{% call show_message(category='warning', dismissible=false) %}
File "/opt/conda/lib/python3.8/site-packages/jinja2/runtime.py", line 828, in _invoke
rv = self._func(*arguments)
File "/opt/conda/lib/python3.8/site-packages/airflow/www/templates/airflow/_messages.html", line 25, in template
{{ caller() }}
File "/opt/conda/lib/python3.8/site-packages/jinja2/runtime.py", line 828, in _invoke
rv = self._func(*arguments)
File "/opt/conda/lib/python3.8/site-packages/airflow/www/templates/airflow/main.html", line 70, in template
{{ macros.datetime_diff_for_humans(scheduler_job.latest_heartbeat) }}</time>.
File "/opt/conda/lib/python3.8/site-packages/airflow/macros/__init__.py", line 77, in datetime_diff_for_humans
return pendulum.instance(dt).diff_for_humans(since)
File "/opt/conda/lib/python3.8/site-packages/pendulum/datetime.py", line 824, in diff_for_humans
other = self.now()
File "/opt/conda/lib/python3.8/site-packages/pendulum/datetime.py", line 106, in now
return pendulum.now(tz)
File "/opt/conda/lib/python3.8/site-packages/pendulum/__init__.py", line 211, in now
dt = _datetime.datetime.now(local_timezone())
File "/opt/conda/lib/python3.8/site-packages/pendulum/tz/__init__.py", line 60, in local_timezone
return get_local_timezone()
File "/opt/conda/lib/python3.8/site-packages/pendulum/tz/local_timezone.py", line 35, in get_local_timezone
tz = _get_system_timezone()
File "/opt/conda/lib/python3.8/site-packages/pendulum/tz/local_timezone.py", line 63, in _get_system_timezone
return _get_unix_timezone()
File "/opt/conda/lib/python3.8/site-packages/pendulum/tz/local_timezone.py", line 242, in _get_unix_timezone
raise RuntimeError("Unable to find any timezone configuration")
RuntimeError: Unable to find any timezone configuration
10.232.204.18 - - [02/Oct/2024:00:14:38 +0000] "GET /home HTTP/1.1" 500 6481 "https://jarvislabs.ai/" "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/129.0.0.0 Safari/537.36"
Scheduler log:
===============
***@***.***:~# airflow scheduler
____________ _____________
____ |__( )_________ __/__ /________ __
____ /| |_ /__ ___/_ /_ __ /_ __ \_ | /| / /
___ ___ | / _ / _ __/ _ / / /_/ /_ |/ |/ /
_/_/ |_/_/ /_/ /_/ /_/ \____/____/|__/
[2024-10-02 00:13:55 +0000] [1690] [INFO] Starting gunicorn 20.1.0
[2024-10-02 00:13:55 +0000] [1690] [INFO] Listening at: http://0.0.0.0:8793 (1690)
[2024-10-02 00:13:55 +0000] [1690] [INFO] Using worker: sync
[2024-10-02 00:13:55 +0000] [1691] [INFO] Booting worker with pid: 1691
[2024-10-02 00:13:55,601] {scheduler_job.py:708} INFO - Starting the scheduler
[2024-10-02 00:13:55,601] {scheduler_job.py:713} INFO - Processing each file at most -1 times
[2024-10-02 00:13:55,603] {executor_loader.py:105} INFO - Loaded executor: SequentialExecutor
[2024-10-02 00:13:55,608] {manager.py:160} INFO - Launched DagFileProcessorManager with pid: 1692
[2024-10-02 00:13:55,610] {scheduler_job.py:1233} INFO - Resetting orphaned tasks for active dag runs
[2024-10-02 00:13:55,622] {settings.py:55} INFO - Configured default timezone Timezone('UTC')
[2024-10-02 00:13:55,625] {scheduler_job.py:1256} INFO - Marked 1 SchedulerJob instances as failed
[2024-10-02 00:13:55,643] {manager.py:406} WARNING - Because we cannot use more than 1 thread (parsing_processes = 2) when using sqlite. So we set parallelism to 1.
[2024-10-02 00:13:55 +0000] [1693] [INFO] Booting worker with pid: 1693
[2024-10-02 00:14:00,252] {dag.py:2968} INFO - Setting next_dagrun for Lead_scoring_inference_pipeline to 2024-10-01T23:00:00+00:00, run_after=2024-10-02T00:00:00+00:00
[2024-10-02 00:14:00,302] {dag.py:2968} INFO - Setting next_dagrun for Lead_Scoring_Data_Engineering_Pipeline to 2024-10-02T00:00:00+00:00, run_after=2024-10-03T00:00:00+00:00
[2024-10-02 00:14:00,531] {scheduler_job.py:353} INFO - 2 tasks up for execution:
<TaskInstance: Lead_Scoring_Data_Engineering_Pipeline.building_db scheduled__2024-10-01T00:00:00+00:00 [scheduled]>
<TaskInstance: Lead_scoring_inference_pipeline.encoding_categorical_variables scheduled__2024-10-01T07:00:00+00:00 [scheduled]>
[2024-10-02 00:14:00,532] {scheduler_job.py:418} INFO - DAG Lead_Scoring_Data_Engineering_Pipeline has 0/16 running and queued tasks
[2024-10-02 00:14:00,533] {scheduler_job.py:418} INFO - DAG Lead_scoring_inference_pipeline has 0/16 running and queued tasks
[2024-10-02 00:14:00,533] {scheduler_job.py:504} INFO - Setting the following tasks to queued state:
<TaskInstance: Lead_Scoring_Data_Engineering_Pipeline.building_db scheduled__2024-10-01T00:00:00+00:00 [scheduled]>
<TaskInstance: Lead_scoring_inference_pipeline.encoding_categorical_variables scheduled__2024-10-01T07:00:00+00:00 [scheduled]>
[2024-10-02 00:14:00,592] {scheduler_job.py:546} INFO - Sending TaskInstanceKey(dag_id='Lead_Scoring_Data_Engineering_Pipeline', task_id='building_db', run_id='scheduled__2024-10-01T00:00:00+00:00', try_number=1, map_index=-1) to executor with priority 7 and queue default
[2024-10-02 00:14:00,592] {base_executor.py:91} INFO - Adding to queue: ['airflow', 'tasks', 'run', 'Lead_Scoring_Data_Engineering_Pipeline', 'building_db', 'scheduled__2024-10-01T00:00:00+00:00', '--local', '--subdir', 'DAGS_FOLDER/Lead_scoring_data_pipeline/.ipynb_checkpoints/lead_scoring_data_pipeline-checkpoint.py']
[2024-10-02 00:14:00,593] {scheduler_job.py:546} INFO - Sending TaskInstanceKey(dag_id='Lead_scoring_inference_pipeline', task_id='encoding_categorical_variables', run_id='scheduled__2024-10-01T07:00:00+00:00', try_number=1, map_index=-1) to executor with priority 4 and queue default
[2024-10-02 00:14:00,593] {base_executor.py:91} INFO - Adding to queue: ['airflow', 'tasks', 'run', 'Lead_scoring_inference_pipeline', 'encoding_categorical_variables', 'scheduled__2024-10-01T07:00:00+00:00', '--local', '--subdir', 'DAGS_FOLDER/Lead_scoring_inference_pipeline/.ipynb_checkpoints/lead_scoring_inference_pipeline-checkpoint.py']
[2024-10-02 00:14:00,613] {sequential_executor.py:59} INFO - Executing command: ['airflow', 'tasks', 'run', 'Lead_Scoring_Data_Engineering_Pipeline', 'building_db', 'scheduled__2024-10-01T00:00:00+00:00', '--local', '--subdir', 'DAGS_FOLDER/Lead_scoring_data_pipeline/.ipynb_checkpoints/lead_scoring_data_pipeline-checkpoint.py']
[2024-10-02 00:14:01,312] {dagbag.py:508} INFO - Filling up the DagBag from /home/airflow/dags/Lead_scoring_data_pipeline/.ipynb_checkpoints/lead_scoring_data_pipeline-checkpoint.py
[2024-10-02 00:14:01,547] {utils.py:145} INFO - Note: NumExpr detected 64 cores but "NUMEXPR_MAX_THREADS" not set, so enforcing safe limit of 8.
[2024-10-02 00:14:01,548] {utils.py:157} INFO - NumExpr defaulting to 8 threads.
[2024-10-02 00:14:04,527] {lead_scoring_data_pipeline-checkpoint.py:47} INFO - Creating mlflow experiment
[2024-10-02 00:14:05,349] {example_kubernetes_executor.py:39} WARNING - The example_kubernetes_executor example DAG requires the kubernetes provider. Please install it with: pip install apache-airflow[cncf.kubernetes]
[2024-10-02 00:14:05,350] {example_local_kubernetes_executor.py:37} WARNING - Could not import DAGs in example_local_kubernetes_executor.py
Traceback (most recent call last):
File "/opt/conda/lib/python3.8/site-packages/airflow/example_dags/example_local_kubernetes_executor.py", line 35, in <module>
from kubernetes.client import models as k8s
ModuleNotFoundError: No module named 'kubernetes'
[2024-10-02 00:14:05,350] {example_local_kubernetes_executor.py:38} WARNING - Install Kubernetes dependencies with: pip install apache-airflow[cncf.kubernetes]
[2024-10-02 00:14:05,354] {example_python_operator.py:68} WARNING - The virtalenv_python example task requires virtualenv, please install it.
[2024-10-02 00:14:05,388] {tutorial_taskflow_api_etl_virtualenv.py:29} WARNING - The tutorial_taskflow_api_etl_virtualenv example DAG requires virtualenv, please install it.
[2024-10-02 00:14:05,430] {task_command.py:371} INFO - Running <TaskInstance: Lead_Scoring_Data_Engineering_Pipeline.building_db scheduled__2024-10-01T00:00:00+00:00 [queued]> on host b07a3767db24
[2024-10-02 00:14:06,999] {sequential_executor.py:59} INFO - Executing command: ['airflow', 'tasks', 'run', 'Lead_scoring_inference_pipeline', 'encoding_categorical_variables', 'scheduled__2024-10-01T07:00:00+00:00', '--local', '--subdir', 'DAGS_FOLDER/Lead_scoring_inference_pipeline/.ipynb_checkpoints/lead_scoring_inference_pipeline-checkpoint.py']
[2024-10-02 00:14:07,807] {dagbag.py:508} INFO - Filling up the DagBag from /home/airflow/dags/Lead_scoring_inference_pipeline/.ipynb_checkpoints/lead_scoring_inference_pipeline-checkpoint.py
[2024-10-02 00:14:08,731] {utils.py:145} INFO - Note: NumExpr detected 64 cores but "NUMEXPR_MAX_THREADS" not set, so enforcing safe limit of 8.
[2024-10-02 00:14:08,731] {utils.py:157} INFO - NumExpr defaulting to 8 threads.
[2024-10-02 00:14:09,066] {example_kubernetes_executor.py:39} WARNING - The example_kubernetes_executor example DAG requires the kubernetes provider. Please install it with: pip install apache-airflow[cncf.kubernetes]
[2024-10-02 00:14:09,067] {example_local_kubernetes_executor.py:37} WARNING - Could not import DAGs in example_local_kubernetes_executor.py
Traceback (most recent call last):
File "/opt/conda/lib/python3.8/site-packages/airflow/example_dags/example_local_kubernetes_executor.py", line 35, in <module>
from kubernetes.client import models as k8s
ModuleNotFoundError: No module named 'kubernetes'
[2024-10-02 00:14:09,068] {example_local_kubernetes_executor.py:38} WARNING - Install Kubernetes dependencies with: pip install apache-airflow[cncf.kubernetes]
[2024-10-02 00:14:09,071] {example_python_operator.py:68} WARNING - The virtalenv_python example task requires virtualenv, please install it.
[2024-10-02 00:14:09,106] {tutorial_taskflow_api_etl_virtualenv.py:29} WARNING - The tutorial_taskflow_api_etl_virtualenv example DAG requires virtualenv, please install it.
[2024-10-02 00:14:09,149] {task_command.py:371} INFO - Running <TaskInstance: Lead_scoring_inference_pipeline.encoding_categorical_variables scheduled__2024-10-01T07:00:00+00:00 [queued]> on host b07a3767db24
[2024-10-02 00:14:18,873] {scheduler_job.py:599} INFO - Executor reports execution of Lead_Scoring_Data_Engineering_Pipeline.building_db run_id=scheduled__2024-10-01T00:00:00+00:00 exited with status success for try_number 1
[2024-10-02 00:14:18,873] {scheduler_job.py:599} INFO - Executor reports execution of Lead_scoring_inference_pipeline.encoding_categorical_variables run_id=scheduled__2024-10-01T07:00:00+00:00 exited with status success for try_number 1
[2024-10-02 00:14:18,885] {scheduler_job.py:642} INFO - TaskInstance Finished: dag_id=Lead_scoring_inference_pipeline, task_id=encoding_categorical_variables, run_id=scheduled__2024-10-01T07:00:00+00:00, map_index=-1, run_start_date=2024-10-02 00:14:09.210160+00:00, run_end_date=2024-10-02 00:14:17.928646+00:00, run_duration=8.718486, state=success, executor_state=success, try_number=1, max_tries=1, job_id=698, pool=default_pool, queue=default, priority_weight=4, operator=PythonOperator, queued_dttm=2024-10-02 00:14:00.534756+00:00, queued_by_job_id=696, pid=1716
[2024-10-02 00:14:18,885] {scheduler_job.py:642} INFO - TaskInstance Finished: dag_id=Lead_Scoring_Data_Engineering_Pipeline, task_id=building_db, run_id=scheduled__2024-10-01T00:00:00+00:00, map_index=-1, run_start_date=2024-10-02 00:14:05.489475+00:00, run_end_date=2024-10-02 00:14:05.840342+00:00, run_duration=0.350867, state=success, executor_state=success, try_number=1, max_tries=1, job_id=697, pool=default_pool, queue=default, priority_weight=7, operator=PythonOperator, queued_dttm=2024-10-02 00:14:00.534756+00:00, queued_by_job_id=696, pid=1705
[2024-10-02 00:14:19,041] {dag.py:2968} INFO - Setting next_dagrun for Lead_scoring_inference_pipeline to 2024-10-02T00:00:00+00:00, run_after=2024-10-02T01:00:00+00:00
[2024-10-02 00:14:19,375] {scheduler_job.py:353} INFO - 3 tasks up for execution:
<TaskInstance: Lead_Scoring_Data_Engineering_Pipeline.rawdata_schema_check scheduled__2024-10-01T00:00:00+00:00 [scheduled]>
<TaskInstance: Lead_scoring_inference_pipeline.encoding_categorical_variables scheduled__2024-10-01T23:00:00+00:00 [scheduled]>
<TaskInstance: Lead_scoring_inference_pipeline.checking_input_features scheduled__2024-10-01T07:00:00+00:00 [scheduled]>
[2024-10-02 00:14:19,375] {scheduler_job.py:418} INFO - DAG Lead_Scoring_Data_Engineering_Pipeline has 0/16 running and queued tasks
[2024-10-02 00:14:19,377] {scheduler_job.py:418} INFO - DAG Lead_scoring_inference_pipeline has 0/16 running and queued tasks
[2024-10-02 00:14:19,377] {scheduler_job.py:418} INFO - DAG Lead_scoring_inference_pipeline has 1/16 running and queued tasks
[2024-10-02 00:14:19,379] {scheduler_job.py:504} INFO - Setting the following tasks to queued state:
<TaskInstance: Lead_Scoring_Data_Engineering_Pipeline.rawdata_schema_check scheduled__2024-10-01T00:00:00+00:00 [scheduled]>
<TaskInstance: Lead_scoring_inference_pipeline.encoding_categorical_variables scheduled__2024-10-01T23:00:00+00:00 [scheduled]>
<TaskInstance: Lead_scoring_inference_pipeline.checking_input_features scheduled__2024-10-01T07:00:00+00:00 [scheduled]>
[2024-10-02 00:14:19,385] {scheduler_job.py:546} INFO - Sending TaskInstanceKey(dag_id='Lead_Scoring_Data_Engineering_Pipeline', task_id='rawdata_schema_check', run_id='scheduled__2024-10-01T00:00:00+00:00', try_number=1, map_index=-1) to executor with priority 6 and queue default
[2024-10-02 00:14:19,386] {base_executor.py:91} INFO - Adding to queue: ['airflow', 'tasks', 'run', 'Lead_Scoring_Data_Engineering_Pipeline', 'rawdata_schema_check', 'scheduled__2024-10-01T00:00:00+00:00', '--local', '--subdir', 'DAGS_FOLDER/Lead_scoring_data_pipeline/.ipynb_checkpoints/lead_scoring_data_pipeline-checkpoint.py']
[2024-10-02 00:14:19,387] {scheduler_job.py:546} INFO - Sending TaskInstanceKey(dag_id='Lead_scoring_inference_pipeline', task_id='encoding_categorical_variables', run_id='scheduled__2024-10-01T23:00:00+00:00', try_number=1, map_index=-1) to executor with priority 4 and queue default
[2024-10-02 00:14:19,387] {base_executor.py:91} INFO - Adding to queue: ['airflow', 'tasks', 'run', 'Lead_scoring_inference_pipeline', 'encoding_categorical_variables', 'scheduled__2024-10-01T23:00:00+00:00', '--local', '--subdir', 'DAGS_FOLDER/Lead_scoring_inference_pipeline/.ipynb_checkpoints/lead_scoring_inference_pipeline-checkpoint.py']
[2024-10-02 00:14:19,389] {scheduler_job.py:546} INFO - Sending TaskInstanceKey(dag_id='Lead_scoring_inference_pipeline', task_id='checking_input_features', run_id='scheduled__2024-10-01T07:00:00+00:00', try_number=1, map_index=-1) to executor with priority 3 and queue default
[2024-10-02 00:14:19,389] {base_executor.py:91} INFO - Adding to queue: ['airflow', 'tasks', 'run', 'Lead_scoring_inference_pipeline', 'checking_input_features', 'scheduled__2024-10-01T07:00:00+00:00', '--local', '--subdir', 'DAGS_FOLDER/Lead_scoring_inference_pipeline/.ipynb_checkpoints/lead_scoring_inference_pipeline-checkpoint.py']
[2024-10-02 00:14:19,411] {sequential_executor.py:59} INFO - Executing command: ['airflow', 'tasks', 'run', 'Lead_Scoring_Data_Engineering_Pipeline', 'rawdata_schema_check', 'scheduled__2024-10-01T00:00:00+00:00', '--local', '--subdir', 'DAGS_FOLDER/Lead_scoring_data_pipeline/.ipynb_checkpoints/lead_scoring_data_pipeline-checkpoint.py']
[2024-10-02 00:14:20,324] {dagbag.py:508} INFO - Filling up the DagBag from /home/airflow/dags/Lead_scoring_data_pipeline/.ipynb_checkpoints/lead_scoring_data_pipeline-checkpoint.py
[2024-10-02 00:14:20,569] {utils.py:145} INFO - Note: NumExpr detected 64 cores but "NUMEXPR_MAX_THREADS" not set, so enforcing safe limit of 8.
[2024-10-02 00:14:20,570] {utils.py:157} INFO - NumExpr defaulting to 8 threads.
[2024-10-02 00:14:25,191] {lead_scoring_data_pipeline-checkpoint.py:47} INFO - Creating mlflow experiment
[2024-10-02 00:14:25,518] {example_kubernetes_executor.py:39} WARNING - The example_kubernetes_executor example DAG requires the kubernetes provider. Please install it with: pip install apache-airflow[cncf.kubernetes]
[2024-10-02 00:14:25,520] {example_local_kubernetes_executor.py:37} WARNING - Could not import DAGs in example_local_kubernetes_executor.py
Traceback (most recent call last):
File "/opt/conda/lib/python3.8/site-packages/airflow/example_dags/example_local_kubernetes_executor.py", line 35, in <module>
from kubernetes.client import models as k8s
ModuleNotFoundError: No module named 'kubernetes'
[2024-10-02 00:14:25,520] {example_local_kubernetes_executor.py:38} WARNING - Install Kubernetes dependencies with: pip install apache-airflow[cncf.kubernetes]
[2024-10-02 00:14:25,524] {example_python_operator.py:68} WARNING - The virtalenv_python example task requires virtualenv, please install it.
[2024-10-02 00:14:25,592] {tutorial_taskflow_api_etl_virtualenv.py:29} WARNING - The tutorial_taskflow_api_etl_virtualenv example DAG requires virtualenv, please install it.
[2024-10-02 00:14:25,684] {task_command.py:371} INFO - Running <TaskInstance: Lead_Scoring_Data_Engineering_Pipeline.rawdata_schema_check scheduled__2024-10-01T00:00:00+00:00 [queued]> on host b07a3767db24
[2024-10-02 00:14:34,723] {sequential_executor.py:59} INFO - Executing command: ['airflow', 'tasks', 'run', 'Lead_scoring_inference_pipeline', 'encoding_categorical_variables', 'scheduled__2024-10-01T23:00:00+00:00', '--local', '--subdir', 'DAGS_FOLDER/Lead_scoring_inference_pipeline/.ipynb_checkpoints/lead_scoring_inference_pipeline-checkpoint.py']
[2024-10-02 00:14:37,632] {dagbag.py:508} INFO - Filling up the DagBag from /home/airflow/dags/Lead_scoring_inference_pipeline/.ipynb_checkpoints/lead_scoring_inference_pipeline-checkpoint.py
[2024-10-02 00:14:38,717] {utils.py:145} INFO - Note: NumExpr detected 64 cores but "NUMEXPR_MAX_THREADS" not set, so enforcing safe limit of 8.
[2024-10-02 00:14:38,717] {utils.py:157} INFO - NumExpr defaulting to 8 threads.
[2024-10-02 00:14:39,057] {example_kubernetes_executor.py:39} WARNING - The example_kubernetes_executor example DAG requires the kubernetes provider. Please install it with: pip install apache-airflow[cncf.kubernetes]
[2024-10-02 00:14:39,058] {example_local_kubernetes_executor.py:37} WARNING - Could not import DAGs in example_local_kubernetes_executor.py
Traceback (most recent call last):
File "/opt/conda/lib/python3.8/site-packages/airflow/example_dags/example_local_kubernetes_executor.py", line 35, in <module>
from kubernetes.client import models as k8s
ModuleNotFoundError: No module named 'kubernetes'
[2024-10-02 00:14:39,058] {example_local_kubernetes_executor.py:38} WARNING - Install Kubernetes dependencies with: pip install apache-airflow[cncf.kubernetes]
[2024-10-02 00:14:39,062] {example_python_operator.py:68} WARNING - The virtalenv_python example task requires virtualenv, please install it.
[2024-10-02 00:14:39,097] {tutorial_taskflow_api_etl_virtualenv.py:29} WARNING - The tutorial_taskflow_api_etl_virtualenv example DAG requires virtualenv, please install it.
[2024-10-02 00:14:39,149] {task_command.py:371} INFO - Running <TaskInstance: Lead_scoring_inference_pipeline.encoding_categorical_variables scheduled__2024-10-01T23:00:00+00:00 [queued]> on host b07a3767db24
[2024-10-02 00:14:46,811] {sequential_executor.py:59} INFO - Executing command: ['airflow', 'tasks', 'run', 'Lead_scoring_inference_pipeline', 'checking_input_features', 'scheduled__2024-10-01T07:00:00+00:00', '--local', '--subdir', 'DAGS_FOLDER/Lead_scoring_inference_pipeline/.ipynb_checkpoints/lead_scoring_inference_pipeline-checkpoint.py']
[2024-10-02 00:14:47,576] {dagbag.py:508} INFO - Filling up the DagBag from /home/airflow/dags/Lead_scoring_inference_pipeline/.ipynb_checkpoints/lead_scoring_inference_pipeline-checkpoint.py
[2024-10-02 00:14:48,445] {utils.py:145} INFO - Note: NumExpr detected 64 cores but "NUMEXPR_MAX_THREADS" not set, so enforcing safe limit of 8.
[2024-10-02 00:14:48,445] {utils.py:157} INFO - NumExpr defaulting to 8 threads.
[2024-10-02 00:14:48,786] {example_kubernetes_executor.py:39} WARNING - The example_kubernetes_executor example DAG requires the kubernetes provider. Please install it with: pip install apache-airflow[cncf.kubernetes]
[2024-10-02 00:14:48,787] {example_local_kubernetes_executor.py:37} WARNING - Could not import DAGs in example_local_kubernetes_executor.py
Traceback (most recent call last):
File "/opt/conda/lib/python3.8/site-packages/airflow/example_dags/example_local_kubernetes_executor.py", line 35, in <module>
from kubernetes.client import models as k8s
ModuleNotFoundError: No module named 'kubernetes'
[2024-10-02 00:14:48,788] {example_local_kubernetes_executor.py:38} WARNING - Install Kubernetes dependencies with: pip install apache-airflow[cncf.kubernetes]
[2024-10-02 00:14:48,791] {example_python_operator.py:68} WARNING - The virtalenv_python example task requires virtualenv, please install it.
[2024-10-02 00:14:48,825] {tutorial_taskflow_api_etl_virtualenv.py:29} WARNING - The tutorial_taskflow_api_etl_virtualenv example DAG requires virtualenv, please install it.
[2024-10-02 00:14:48,866] {task_command.py:371} INFO - Running <TaskInstance: Lead_scoring_inference_pipeline.checking_input_features scheduled__2024-10-01T07:00:00+00:00 [queued]> on host b07a3767db24
[2024-10-02 00:14:54,893] {scheduler_job.py:599} INFO - Executor reports execution of Lead_Scoring_Data_Engineering_Pipeline.rawdata_schema_check run_id=scheduled__2024-10-01T00:00:00+00:00 exited with status success for try_number 1
[2024-10-02 00:14:54,893] {scheduler_job.py:599} INFO - Executor reports execution of Lead_scoring_inference_pipeline.encoding_categorical_variables run_id=scheduled__2024-10-01T23:00:00+00:00 exited with status success for try_number 1
[2024-10-02 00:14:54,893] {scheduler_job.py:599} INFO - Executor reports execution of Lead_scoring_inference_pipeline.checking_input_features run_id=scheduled__2024-10-01T07:00:00+00:00 exited with status success for try_number 1
[2024-10-02 00:14:54,899] {scheduler_job.py:642} INFO - TaskInstance Finished: dag_id=Lead_scoring_inference_pipeline, task_id=checking_input_features, run_id=scheduled__2024-10-01T07:00:00+00:00, map_index=-1, run_start_date=2024-10-02 00:14:49.204026+00:00, run_end_date=2024-10-02 00:14:54.036880+00:00, run_duration=4.832854, state=success, executor_state=success, try_number=1, max_tries=1, job_id=701, pool=default_pool, queue=default, priority_weight=3, operator=PythonOperator, queued_dttm=2024-10-02 00:14:19.380465+00:00, queued_by_job_id=696, pid=1758
[2024-10-02 00:14:54,900] {scheduler_job.py:642} INFO - TaskInstance Finished: dag_id=Lead_Scoring_Data_Engineering_Pipeline, task_id=rawdata_schema_check, run_id=scheduled__2024-10-01T00:00:00+00:00, map_index=-1, run_start_date=2024-10-02 00:14:25.895394+00:00, run_end_date=2024-10-02 00:14:30.420493+00:00, run_duration=4.525099, state=success, executor_state=success, try_number=1, max_tries=1, job_id=699, pool=default_pool, queue=default, priority_weight=6, operator=PythonOperator, queued_dttm=2024-10-02 00:14:19.380465+00:00, queued_by_job_id=696, pid=1732
[2024-10-02 00:14:54,900] {scheduler_job.py:642} INFO - TaskInstance Finished: dag_id=Lead_scoring_inference_pipeline, task_id=encoding_categorical_variables, run_id=scheduled__2024-10-01T23:00:00+00:00, map_index=-1, run_start_date=2024-10-02 00:14:39.228254+00:00, run_end_date=2024-10-02 00:14:46.043804+00:00, run_duration=6.81555, state=success, executor_state=success, try_number=1, max_tries=1, job_id=700, pool=default_pool, queue=default, priority_weight=4, operator=PythonOperator, queued_dttm=2024-10-02 00:14:19.380465+00:00, queued_by_job_id=696, pid=1747
[2024-10-02 00:14:55,185] {scheduler_job.py:353} INFO - 3 tasks up for execution:
<TaskInstance: Lead_Scoring_Data_Engineering_Pipeline.loading_data scheduled__2024-10-01T00:00:00+00:00 [scheduled]>
<TaskInstance: Lead_scoring_inference_pipeline.checking_input_features scheduled__2024-10-01T23:00:00+00:00 [scheduled]>
<TaskInstance: Lead_scoring_inference_pipeline.generating_models_prediction scheduled__2024-10-01T07:00:00+00:00 [scheduled]>
[2024-10-02 00:14:55,186] {scheduler_job.py:418} INFO - DAG Lead_Scoring_Data_Engineering_Pipeline has 0/16 running and queued tasks
[2024-10-02 00:14:55,186] {scheduler_job.py:418} INFO - DAG Lead_scoring_inference_pipeline has 0/16 running and queued tasks
[2024-10-02 00:14:55,186] {scheduler_job.py:418} INFO - DAG Lead_scoring_inference_pipeline has 1/16 running and queued tasks
[2024-10-02 00:14:55,187] {scheduler_job.py:504} INFO - Setting the following tasks to queued state:
<TaskInstance: Lead_Scoring_Data_Engineering_Pipeline.loading_data scheduled__2024-10-01T00:00:00+00:00 [scheduled]>
<TaskInstance: Lead_scoring_inference_pipeline.checking_input_features scheduled__2024-10-01T23:00:00+00:00 [scheduled]>
<TaskInstance: Lead_scoring_inference_pipeline.generating_models_prediction scheduled__2024-10-01T07:00:00+00:00 [scheduled]>
[2024-10-02 00:14:55,192] {scheduler_job.py:546} INFO - Sending TaskInstanceKey(dag_id='Lead_Scoring_Data_Engineering_Pipeline', task_id='loading_data', run_id='scheduled__2024-10-01T00:00:00+00:00', try_number=1, map_index=-1) to executor with priority 5 and queue default
[2024-10-02 00:14:55,193] {base_executor.py:91} INFO - Adding to queue: ['airflow', 'tasks', 'run', 'Lead_Scoring_Data_Engineering_Pipeline', 'loading_data', 'scheduled__2024-10-01T00:00:00+00:00', '--local', '--subdir', 'DAGS_FOLDER/Lead_scoring_data_pipeline/.ipynb_checkpoints/lead_scoring_data_pipeline-checkpoint.py']
[2024-10-02 00:14:55,194] {scheduler_job.py:546} INFO - Sending TaskInstanceKey(dag_id='Lead_scoring_inference_pipeline', task_id='checking_input_features', run_id='scheduled__2024-10-01T23:00:00+00:00', try_number=1, map_index=-1) to executor with priority 3 and queue default
[2024-10-02 00:14:55,194] {base_executor.py:91} INFO - Adding to queue: ['airflow', 'tasks', 'run', 'Lead_scoring_inference_pipeline', 'checking_input_features', 'scheduled__2024-10-01T23:00:00+00:00', '--local', '--subdir', 'DAGS_FOLDER/Lead_scoring_inference_pipeline/.ipynb_checkpoints/lead_scoring_inference_pipeline-checkpoint.py']
[2024-10-02 00:14:55,195] {scheduler_job.py:546} INFO - Sending TaskInstanceKey(dag_id='Lead_scoring_inference_pipeline', task_id='generating_models_prediction', run_id='scheduled__2024-10-01T07:00:00+00:00', try_number=1, map_index=-1) to executor with priority 2 and queue default
[2024-10-02 00:14:55,196] {base_executor.py:91} INFO - Adding to queue: ['airflow', 'tasks', 'run', 'Lead_scoring_inference_pipeline', 'generating_models_prediction', 'scheduled__2024-10-01T07:00:00+00:00', '--local', '--subdir', 'DAGS_FOLDER/Lead_scoring_inference_pipeline/.ipynb_checkpoints/lead_scoring_inference_pipeline-checkpoint.py']
[2024-10-02 00:14:55,250] {sequential_executor.py:59} INFO - Executing command: ['airflow', 'tasks', 'run', 'Lead_Scoring_Data_Engineering_Pipeline', 'loading_data', 'scheduled__2024-10-01T00:00:00+00:00', '--local', '--subdir', 'DAGS_FOLDER/Lead_scoring_data_pipeline/.ipynb_checkpoints/lead_scoring_data_pipeline-checkpoint.py']
[2024-10-02 00:14:55,912] {dagbag.py:508} INFO - Filling up the DagBag from /home/airflow/dags/Lead_scoring_data_pipeline/.ipynb_checkpoints/lead_scoring_data_pipeline-checkpoint.py
[2024-10-02 00:14:56,141] {utils.py:145} INFO - Note: NumExpr detected 64 cores but "NUMEXPR_MAX_THREADS" not set, so enforcing safe limit of 8.
[2024-10-02 00:14:56,141] {utils.py:157} INFO - NumExpr defaulting to 8 threads.
[2024-10-02 00:14:59,093] {lead_scoring_data_pipeline-checkpoint.py:47} INFO - Creating mlflow experiment
[2024-10-02 00:14:59,253] {example_kubernetes_executor.py:39} WARNING - The example_kubernetes_executor example DAG requires the kubernetes provider. Please install it with: pip install apache-airflow[cncf.kubernetes]
[2024-10-02 00:14:59,254] {example_local_kubernetes_executor.py:37} WARNING - Could not import DAGs in example_local_kubernetes_executor.py
Traceback (most recent call last):
File "/opt/conda/lib/python3.8/site-packages/airflow/example_dags/example_local_kubernetes_executor.py", line 35, in <module>
from kubernetes.client import models as k8s
ModuleNotFoundError: No module named 'kubernetes'
[2024-10-02 00:14:59,254] {example_local_kubernetes_executor.py:38} WARNING - Install Kubernetes dependencies with: pip install apache-airflow[cncf.kubernetes]
[2024-10-02 00:14:59,258] {example_python_operator.py:68} WARNING - The virtalenv_python example task requires virtualenv, please install it.
[2024-10-02 00:14:59,291] {tutorial_taskflow_api_etl_virtualenv.py:29} WARNING - The tutorial_taskflow_api_etl_virtualenv example DAG requires virtualenv, please install it.
[2024-10-02 00:14:59,548] {task_command.py:371} INFO - Running <TaskInstance: Lead_Scoring_Data_Engineering_Pipeline.loading_data scheduled__2024-10-01T00:00:00+00:00 [queued]> on host b07a3767db24
[2024-10-02 00:15:04,403] {sequential_executor.py:59} INFO - Executing command: ['airflow', 'tasks', 'run', 'Lead_scoring_inference_pipeline', 'checking_input_features', 'scheduled__2024-10-01T23:00:00+00:00', '--local', '--subdir', 'DAGS_FOLDER/Lead_scoring_inference_pipeline/.ipynb_checkpoints/lead_scoring_inference_pipeline-checkpoint.py']
[2024-10-02 00:15:05,080] {dagbag.py:508} INFO - Filling up the DagBag from /home/airflow/dags/Lead_scoring_inference_pipeline/.ipynb_checkpoints/lead_scoring_inference_pipeline-checkpoint.py
[2024-10-02 00:15:05,983] {utils.py:145} INFO - Note: NumExpr detected 64 cores but "NUMEXPR_MAX_THREADS" not set, so enforcing safe limit of 8.
[2024-10-02 00:15:05,983] {utils.py:157} INFO - NumExpr defaulting to 8 threads.
[2024-10-02 00:15:06,324] {example_kubernetes_executor.py:39} WARNING - The example_kubernetes_executor example DAG requires the kubernetes provider. Please install it with: pip install apache-airflow[cncf.kubernetes]
[2024-10-02 00:15:06,325] {example_local_kubernetes_executor.py:37} WARNING - Could not import DAGs in example_local_kubernetes_executor.py
Traceback (most recent call last):
File "/opt/conda/lib/python3.8/site-packages/airflow/example_dags/example_local_kubernetes_executor.py", line 35, in <module>
from kubernetes.client import models as k8s
ModuleNotFoundError: No module named 'kubernetes'
[2024-10-02 00:15:06,326] {example_local_kubernetes_executor.py:38} WARNING - Install Kubernetes dependencies with: pip install apache-airflow[cncf.kubernetes]
[2024-10-02 00:15:06,329] {example_python_operator.py:68} WARNING - The virtalenv_python example task requires virtualenv, please install it.
[2024-10-02 00:15:06,367] {tutorial_taskflow_api_etl_virtualenv.py:29} WARNING - The tutorial_taskflow_api_etl_virtualenv example DAG requires virtualenv, please install it.
[2024-10-02 00:15:06,412] {task_command.py:371} INFO - Running <TaskInstance: Lead_scoring_inference_pipeline.checking_input_features scheduled__2024-10-01T23:00:00+00:00 [queued]> on host b07a3767db24
MLFLOW : Log:
==================
***@***.***:~/airflow/dags/Lead_scoring_data_pipeline# mlflow server --backend-store-uri='sqlite:///database/lead_scoring_data_cleaning.db' --default-artifact-root="mlruns/" --port=6006 --host=0.0.0.0
[2024-10-02 00:13:43 +0000] [1650] [INFO] Starting gunicorn 20.1.0
[2024-10-02 00:13:43 +0000] [1650] [INFO] Listening at: http://0.0.0.0:6006 (1650)
[2024-10-02 00:13:43 +0000] [1650] [INFO] Using worker: sync
[2024-10-02 00:13:43 +0000] [1652] [INFO] Booting worker with pid: 1652
[2024-10-02 00:13:44 +0000] [1653] [INFO] Booting worker with pid: 1653
[2024-10-02 00:13:44 +0000] [1654] [INFO] Booting worker with pid: 1654
[2024-10-02 00:13:44 +0000] [1655] [INFO] Booting worker with pid: 1655
|
Conflig looks good but still I feel like the exception is not usual. Hypothesis: Something is broken in your install. One option would be a clean re-install (don't forget to use the right constraints) and even much better I'd recommend to use a recent version. 2.3.3 for sure will not receive fixes. And the error is so basic that I doubt it is a SW problem but rather something in your setup or environment. Config at least looks "proper". |
This issue was moved to a discussion.
You can continue the conversation there. Go to discussion →
Apache Airflow version
2.10.1
If "Other Airflow 2 version" selected, which one?
2.3.3
What happened?
Started airflow scheduler and webserver and opened the endpoint for 6007 from Jarvis lab. Got below error.
Ooops!
Something bad has happened.
Airflow is used by many users, and it is very likely that others had similar problems and you can easily find
a solution to your problem.
Consider following these steps:
gather the relevant information (detailed logs with errors, reproduction steps, details of your deployment)
find similar issues using:
if you run Airflow on a Managed Service, consider opening an issue using the service support channels
if you tried and have difficulty with diagnosing and fixing the problem yourself, consider creating a bug report.
Make sure however, to include all relevant details and results of your investigation so far.
Python version: 3.8.12
Airflow version: 2.3.3
Node: f6d2b5df6971
Traceback (most recent call last):
File "/opt/conda/lib/python3.8/site-packages/flask/app.py", line 2073, in wsgi_app
response = self.full_dispatch_request()
File "/opt/conda/lib/python3.8/site-packages/flask/app.py", line 1519, in full_dispatch_request
rv = self.handle_user_exception(e)
File "/opt/conda/lib/python3.8/site-packages/flask/app.py", line 1517, in full_dispatch_request
rv = self.dispatch_request()
File "/opt/conda/lib/python3.8/site-packages/flask/app.py", line 1503, in dispatch_request
return self.ensure_sync(self.view_functions[rule.endpoint])(**req.view_args)
File "/opt/conda/lib/python3.8/site-packages/airflow/www/auth.py", line 46, in decorated
return func(*args, **kwargs)
File "/opt/conda/lib/python3.8/site-packages/airflow/www/views.py", line 964, in index
return self.render_template(
File "/opt/conda/lib/python3.8/site-packages/airflow/www/views.py", line 709, in render_template
return super().render_template(
File "/opt/conda/lib/python3.8/site-packages/flask_appbuilder/baseviews.py", line 322, in render_template
return render_template(
File "/opt/conda/lib/python3.8/site-packages/flask/templating.py", line 154, in render_template
return _render(
File "/opt/conda/lib/python3.8/site-packages/flask/templating.py", line 128, in _render
rv = template.render(context)
File "/opt/conda/lib/python3.8/site-packages/jinja2/environment.py", line 1291, in render
self.environment.handle_exception()
File "/opt/conda/lib/python3.8/site-packages/jinja2/environment.py", line 925, in handle_exception
raise rewrite_traceback_stack(source=source)
File "/opt/conda/lib/python3.8/site-packages/airflow/www/templates/airflow/dags.html", line 43, in top-level template code
{% elif curr_ordering_direction == 'asc' and request.args.get('sorting_key') == attribute_name %}
File "/opt/conda/lib/python3.8/site-packages/airflow/www/templates/airflow/main.html", line 21, in top-level template code
{% from 'airflow/_messages.html' import show_message %}
File "/opt/conda/lib/python3.8/site-packages/flask_appbuilder/templates/appbuilder/baselayout.html", line 2, in top-level template code
{% import 'appbuilder/baselib.html' as baselib %}
File "/opt/conda/lib/python3.8/site-packages/flask_appbuilder/templates/appbuilder/init.html", line 37, in top-level template code
{% block body %}
File "/opt/conda/lib/python3.8/site-packages/flask_appbuilder/templates/appbuilder/baselayout.html", line 16, in block 'body'
{% block messages %}
File "/opt/conda/lib/python3.8/site-packages/airflow/www/templates/airflow/dags.html", line 104, in block 'messages'
{{ super() }}
File "/opt/conda/lib/python3.8/site-packages/airflow/www/templates/airflow/main.html", line 62, in block 'messages'
{% call show_message(category='warning', dismissible=false) %}
File "/opt/conda/lib/python3.8/site-packages/jinja2/runtime.py", line 828, in _invoke
rv = self._func(*arguments)
File "/opt/conda/lib/python3.8/site-packages/airflow/www/templates/airflow/_messages.html", line 25, in template
{{ caller() }}
File "/opt/conda/lib/python3.8/site-packages/jinja2/runtime.py", line 828, in _invoke
rv = self._func(*arguments)
File "/opt/conda/lib/python3.8/site-packages/airflow/www/templates/airflow/main.html", line 70, in template
>{{ macros.datetime_diff_for_humans(scheduler_job.latest_heartbeat) }}.
File "/opt/conda/lib/python3.8/site-packages/airflow/macros/init.py", line 77, in datetime_diff_for_humans
return pendulum.instance(dt).diff_for_humans(since)
File "/opt/conda/lib/python3.8/site-packages/pendulum/datetime.py", line 824, in diff_for_humans
other = self.now()
File "/opt/conda/lib/python3.8/site-packages/pendulum/datetime.py", line 106, in now
return pendulum.now(tz)
File "/opt/conda/lib/python3.8/site-packages/pendulum/init.py", line 211, in now
dt = _datetime.datetime.now(local_timezone())
File "/opt/conda/lib/python3.8/site-packages/pendulum/tz/init.py", line 60, in local_timezone
return get_local_timezone()
File "/opt/conda/lib/python3.8/site-packages/pendulum/tz/local_timezone.py", line 35, in get_local_timezone
tz = _get_system_timezone()
File "/opt/conda/lib/python3.8/site-packages/pendulum/tz/local_timezone.py", line 63, in _get_system_timezone
return _get_unix_timezone()
File "/opt/conda/lib/python3.8/site-packages/pendulum/tz/local_timezone.py", line 242, in _get_unix_timezone
raise RuntimeError("Unable to find any timezone configuration")
RuntimeError: Unable to find any timezone configuration
What you think should happen instead?
UI should open
How to reproduce
Open the UI
Operating System
Linux f6d2b5df6971 6.2.0-39-generic #40~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Thu Nov 16 10:53:04 UTC 2 x86_64 x86_64 x86_64 GNU/Linux
Versions of Apache Airflow Providers
2.3.3
Deployment
Other
Deployment details
NA
Anything else?
NA
Are you willing to submit PR?
Code of Conduct
The text was updated successfully, but these errors were encountered: