-
Notifications
You must be signed in to change notification settings - Fork 14.3k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Create CustomJob and Datasets operators for Vertex AI service (#21253)
- Loading branch information
1 parent
837ff7e
commit e973740
Showing
18 changed files
with
6,781 additions
and
1 deletion.
There are no files selected for viewing
315 changes: 315 additions & 0 deletions
315
airflow/providers/google/cloud/example_dags/example_vertex_ai.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,315 @@ | ||
# | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. | ||
|
||
""" | ||
Example Airflow DAG that demonstrates operators for the Google Vertex AI service in the Google | ||
Cloud Platform. | ||
This DAG relies on the following OS environment variables: | ||
* GCP_VERTEX_AI_BUCKET - Google Cloud Storage bucket where the model will be saved | ||
after training process was finished. | ||
* CUSTOM_CONTAINER_URI - path to container with model. | ||
* PYTHON_PACKAGE_GSC_URI - path to test model in archive. | ||
* LOCAL_TRAINING_SCRIPT_PATH - path to local training script. | ||
* DATASET_ID - ID of dataset which will be used in training process. | ||
""" | ||
import os | ||
from datetime import datetime | ||
from uuid import uuid4 | ||
|
||
from google.protobuf.struct_pb2 import Value | ||
|
||
from airflow import models | ||
from airflow.providers.google.cloud.operators.vertex_ai.custom_job import ( | ||
CreateCustomContainerTrainingJobOperator, | ||
CreateCustomPythonPackageTrainingJobOperator, | ||
CreateCustomTrainingJobOperator, | ||
DeleteCustomTrainingJobOperator, | ||
ListCustomTrainingJobOperator, | ||
) | ||
from airflow.providers.google.cloud.operators.vertex_ai.dataset import ( | ||
CreateDatasetOperator, | ||
DeleteDatasetOperator, | ||
ExportDataOperator, | ||
GetDatasetOperator, | ||
ImportDataOperator, | ||
ListDatasetsOperator, | ||
UpdateDatasetOperator, | ||
) | ||
|
||
PROJECT_ID = os.environ.get("GCP_PROJECT_ID", "an-id") | ||
REGION = os.environ.get("GCP_LOCATION", "us-central1") | ||
BUCKET = os.environ.get("GCP_VERTEX_AI_BUCKET", "vertex-ai-system-tests") | ||
|
||
STAGING_BUCKET = f"gs://{BUCKET}" | ||
DISPLAY_NAME = str(uuid4()) # Create random display name | ||
CONTAINER_URI = "gcr.io/cloud-aiplatform/training/tf-cpu.2-2:latest" | ||
CUSTOM_CONTAINER_URI = os.environ.get("CUSTOM_CONTAINER_URI", "path_to_container_with_model") | ||
MODEL_SERVING_CONTAINER_URI = "gcr.io/cloud-aiplatform/prediction/tf2-cpu.2-2:latest" | ||
REPLICA_COUNT = 1 | ||
MACHINE_TYPE = "n1-standard-4" | ||
ACCELERATOR_TYPE = "ACCELERATOR_TYPE_UNSPECIFIED" | ||
ACCELERATOR_COUNT = 0 | ||
TRAINING_FRACTION_SPLIT = 0.7 | ||
TEST_FRACTION_SPLIT = 0.15 | ||
VALIDATION_FRACTION_SPLIT = 0.15 | ||
|
||
PYTHON_PACKAGE_GCS_URI = os.environ.get("PYTHON_PACKAGE_GSC_URI", "path_to_test_model_in_arch") | ||
PYTHON_MODULE_NAME = "aiplatform_custom_trainer_script.task" | ||
|
||
LOCAL_TRAINING_SCRIPT_PATH = os.environ.get("LOCAL_TRAINING_SCRIPT_PATH", "path_to_training_script") | ||
|
||
TRAINING_PIPELINE_ID = "test-training-pipeline-id" | ||
CUSTOM_JOB_ID = "test-custom-job-id" | ||
|
||
IMAGE_DATASET = { | ||
"display_name": str(uuid4()), | ||
"metadata_schema_uri": "gs://google-cloud-aiplatform/schema/dataset/metadata/image_1.0.0.yaml", | ||
"metadata": Value(string_value="test-image-dataset"), | ||
} | ||
TABULAR_DATASET = { | ||
"display_name": str(uuid4()), | ||
"metadata_schema_uri": "gs://google-cloud-aiplatform/schema/dataset/metadata/tabular_1.0.0.yaml", | ||
"metadata": Value(string_value="test-tabular-dataset"), | ||
} | ||
TEXT_DATASET = { | ||
"display_name": str(uuid4()), | ||
"metadata_schema_uri": "gs://google-cloud-aiplatform/schema/dataset/metadata/text_1.0.0.yaml", | ||
"metadata": Value(string_value="test-text-dataset"), | ||
} | ||
VIDEO_DATASET = { | ||
"display_name": str(uuid4()), | ||
"metadata_schema_uri": "gs://google-cloud-aiplatform/schema/dataset/metadata/video_1.0.0.yaml", | ||
"metadata": Value(string_value="test-video-dataset"), | ||
} | ||
TIME_SERIES_DATASET = { | ||
"display_name": str(uuid4()), | ||
"metadata_schema_uri": "gs://google-cloud-aiplatform/schema/dataset/metadata/time_series_1.0.0.yaml", | ||
"metadata": Value(string_value="test-video-dataset"), | ||
} | ||
DATASET_ID = os.environ.get("DATASET_ID", "test-dataset-id") | ||
TEST_EXPORT_CONFIG = {"gcs_destination": {"output_uri_prefix": "gs://test-vertex-ai-bucket/exports"}} | ||
TEST_IMPORT_CONFIG = [ | ||
{ | ||
"data_item_labels": { | ||
"test-labels-name": "test-labels-value", | ||
}, | ||
"import_schema_uri": ( | ||
"gs://google-cloud-aiplatform/schema/dataset/ioformat/image_bounding_box_io_format_1.0.0.yaml" | ||
), | ||
"gcs_source": { | ||
"uris": ["gs://ucaip-test-us-central1/dataset/salads_oid_ml_use_public_unassigned.jsonl"] | ||
}, | ||
}, | ||
] | ||
DATASET_TO_UPDATE = {"display_name": "test-name"} | ||
TEST_UPDATE_MASK = {"paths": ["displayName"]} | ||
|
||
with models.DAG( | ||
"example_gcp_vertex_ai_custom_jobs", | ||
schedule_interval="@once", | ||
start_date=datetime(2021, 1, 1), | ||
catchup=False, | ||
) as custom_jobs_dag: | ||
# [START how_to_cloud_vertex_ai_create_custom_container_training_job_operator] | ||
create_custom_container_training_job = CreateCustomContainerTrainingJobOperator( | ||
task_id="custom_container_task", | ||
staging_bucket=STAGING_BUCKET, | ||
display_name=f"train-housing-container-{DISPLAY_NAME}", | ||
container_uri=CUSTOM_CONTAINER_URI, | ||
model_serving_container_image_uri=MODEL_SERVING_CONTAINER_URI, | ||
# run params | ||
dataset_id=DATASET_ID, | ||
command=["python3", "task.py"], | ||
model_display_name=f"container-housing-model-{DISPLAY_NAME}", | ||
replica_count=REPLICA_COUNT, | ||
machine_type=MACHINE_TYPE, | ||
accelerator_type=ACCELERATOR_TYPE, | ||
accelerator_count=ACCELERATOR_COUNT, | ||
training_fraction_split=TRAINING_FRACTION_SPLIT, | ||
validation_fraction_split=VALIDATION_FRACTION_SPLIT, | ||
test_fraction_split=TEST_FRACTION_SPLIT, | ||
region=REGION, | ||
project_id=PROJECT_ID, | ||
) | ||
# [END how_to_cloud_vertex_ai_create_custom_container_training_job_operator] | ||
|
||
# [START how_to_cloud_vertex_ai_create_custom_python_package_training_job_operator] | ||
create_custom_python_package_training_job = CreateCustomPythonPackageTrainingJobOperator( | ||
task_id="python_package_task", | ||
staging_bucket=STAGING_BUCKET, | ||
display_name=f"train-housing-py-package-{DISPLAY_NAME}", | ||
python_package_gcs_uri=PYTHON_PACKAGE_GCS_URI, | ||
python_module_name=PYTHON_MODULE_NAME, | ||
container_uri=CONTAINER_URI, | ||
model_serving_container_image_uri=MODEL_SERVING_CONTAINER_URI, | ||
# run params | ||
dataset_id=DATASET_ID, | ||
model_display_name=f"py-package-housing-model-{DISPLAY_NAME}", | ||
replica_count=REPLICA_COUNT, | ||
machine_type=MACHINE_TYPE, | ||
accelerator_type=ACCELERATOR_TYPE, | ||
accelerator_count=ACCELERATOR_COUNT, | ||
training_fraction_split=TRAINING_FRACTION_SPLIT, | ||
validation_fraction_split=VALIDATION_FRACTION_SPLIT, | ||
test_fraction_split=TEST_FRACTION_SPLIT, | ||
region=REGION, | ||
project_id=PROJECT_ID, | ||
) | ||
# [END how_to_cloud_vertex_ai_create_custom_python_package_training_job_operator] | ||
|
||
# [START how_to_cloud_vertex_ai_create_custom_training_job_operator] | ||
create_custom_training_job = CreateCustomTrainingJobOperator( | ||
task_id="custom_task", | ||
staging_bucket=STAGING_BUCKET, | ||
display_name=f"train-housing-custom-{DISPLAY_NAME}", | ||
script_path=LOCAL_TRAINING_SCRIPT_PATH, | ||
container_uri=CONTAINER_URI, | ||
requirements=["gcsfs==0.7.1"], | ||
model_serving_container_image_uri=MODEL_SERVING_CONTAINER_URI, | ||
# run params | ||
dataset_id=DATASET_ID, | ||
replica_count=1, | ||
model_display_name=f"custom-housing-model-{DISPLAY_NAME}", | ||
sync=False, | ||
region=REGION, | ||
project_id=PROJECT_ID, | ||
) | ||
# [END how_to_cloud_vertex_ai_create_custom_training_job_operator] | ||
|
||
# [START how_to_cloud_vertex_ai_delete_custom_training_job_operator] | ||
delete_custom_training_job = DeleteCustomTrainingJobOperator( | ||
task_id="delete_custom_training_job", | ||
training_pipeline_id=TRAINING_PIPELINE_ID, | ||
custom_job_id=CUSTOM_JOB_ID, | ||
region=REGION, | ||
project_id=PROJECT_ID, | ||
) | ||
# [END how_to_cloud_vertex_ai_delete_custom_training_job_operator] | ||
|
||
# [START how_to_cloud_vertex_ai_list_custom_training_job_operator] | ||
list_custom_training_job = ListCustomTrainingJobOperator( | ||
task_id="list_custom_training_job", | ||
region=REGION, | ||
project_id=PROJECT_ID, | ||
) | ||
# [END how_to_cloud_vertex_ai_list_custom_training_job_operator] | ||
|
||
with models.DAG( | ||
"example_gcp_vertex_ai_dataset", | ||
schedule_interval="@once", | ||
start_date=datetime(2021, 1, 1), | ||
catchup=False, | ||
) as dataset_dag: | ||
# [START how_to_cloud_vertex_ai_create_dataset_operator] | ||
create_image_dataset_job = CreateDatasetOperator( | ||
task_id="image_dataset", | ||
dataset=IMAGE_DATASET, | ||
region=REGION, | ||
project_id=PROJECT_ID, | ||
) | ||
create_tabular_dataset_job = CreateDatasetOperator( | ||
task_id="tabular_dataset", | ||
dataset=TABULAR_DATASET, | ||
region=REGION, | ||
project_id=PROJECT_ID, | ||
) | ||
create_text_dataset_job = CreateDatasetOperator( | ||
task_id="text_dataset", | ||
dataset=TEXT_DATASET, | ||
region=REGION, | ||
project_id=PROJECT_ID, | ||
) | ||
create_video_dataset_job = CreateDatasetOperator( | ||
task_id="video_dataset", | ||
dataset=VIDEO_DATASET, | ||
region=REGION, | ||
project_id=PROJECT_ID, | ||
) | ||
create_time_series_dataset_job = CreateDatasetOperator( | ||
task_id="time_series_dataset", | ||
dataset=TIME_SERIES_DATASET, | ||
region=REGION, | ||
project_id=PROJECT_ID, | ||
) | ||
# [END how_to_cloud_vertex_ai_create_dataset_operator] | ||
|
||
# [START how_to_cloud_vertex_ai_delete_dataset_operator] | ||
delete_dataset_job = DeleteDatasetOperator( | ||
task_id="delete_dataset", | ||
dataset_id=create_text_dataset_job.output['dataset_id'], | ||
region=REGION, | ||
project_id=PROJECT_ID, | ||
) | ||
# [END how_to_cloud_vertex_ai_delete_dataset_operator] | ||
|
||
# [START how_to_cloud_vertex_ai_get_dataset_operator] | ||
get_dataset = GetDatasetOperator( | ||
task_id="get_dataset", | ||
project_id=PROJECT_ID, | ||
region=REGION, | ||
dataset_id=create_tabular_dataset_job.output['dataset_id'], | ||
) | ||
# [END how_to_cloud_vertex_ai_get_dataset_operator] | ||
|
||
# [START how_to_cloud_vertex_ai_export_data_operator] | ||
export_data_job = ExportDataOperator( | ||
task_id="export_data", | ||
dataset_id=create_image_dataset_job.output['dataset_id'], | ||
region=REGION, | ||
project_id=PROJECT_ID, | ||
export_config=TEST_EXPORT_CONFIG, | ||
) | ||
# [END how_to_cloud_vertex_ai_export_data_operator] | ||
|
||
# [START how_to_cloud_vertex_ai_import_data_operator] | ||
import_data_job = ImportDataOperator( | ||
task_id="import_data", | ||
dataset_id=create_image_dataset_job.output['dataset_id'], | ||
region=REGION, | ||
project_id=PROJECT_ID, | ||
import_configs=TEST_IMPORT_CONFIG, | ||
) | ||
# [END how_to_cloud_vertex_ai_import_data_operator] | ||
|
||
# [START how_to_cloud_vertex_ai_list_dataset_operator] | ||
list_dataset_job = ListDatasetsOperator( | ||
task_id="list_dataset", | ||
region=REGION, | ||
project_id=PROJECT_ID, | ||
) | ||
# [END how_to_cloud_vertex_ai_list_dataset_operator] | ||
|
||
# [START how_to_cloud_vertex_ai_update_dataset_operator] | ||
update_dataset_job = UpdateDatasetOperator( | ||
task_id="update_dataset", | ||
project_id=PROJECT_ID, | ||
region=REGION, | ||
dataset_id=create_video_dataset_job.output['dataset_id'], | ||
dataset=DATASET_TO_UPDATE, | ||
update_mask=TEST_UPDATE_MASK, | ||
) | ||
# [END how_to_cloud_vertex_ai_update_dataset_operator] | ||
|
||
create_time_series_dataset_job | ||
create_text_dataset_job >> delete_dataset_job | ||
create_tabular_dataset_job >> get_dataset | ||
create_image_dataset_job >> import_data_job >> export_data_job | ||
create_video_dataset_job >> update_dataset_job | ||
list_dataset_job |
16 changes: 16 additions & 0 deletions
16
airflow/providers/google/cloud/hooks/vertex_ai/__init__.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,16 @@ | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. |
Oops, something went wrong.