Skip to content

answerquest/IMD-grid-data-work

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

26 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

IMD-grid-data-work

Some work on IMD Pune's gridded data sets
Author: Nikhil VJ, https://nikhilvj.co.in

Source URL: https://imdpune.gov.in/Clim_Pred_LRF_New/Grided_Data_Download.html | Alternate: https://imdpune.gov.in/lrfindex.php -> See under Gridded data in side menu.

Intentions of this project: To make this data more accessible for people, to show much simpler code to extract the data than what I've seen online. And to get my hands dirty on a large trove of Indian open data :)

Website

Direct data extract from .GRD files

Note: All code is in python
Install imdlib package
Assuming that you've downloaded 2010 data file, saved it as "2010.grd" in "rain" folder next to the program :

import imdlib
rain1 = imdlib.open_data('rain', 2010, 2010, 'yearwise').get_xarray().to_dataframe()
rain2 = rain1[rain1['rain'] > -100].reset_index()
rain2.to_csv('rain_2010.csv',index=False)

The functions .get_xarray(), .to_dataframe() and .reset_index() do the job of converting the multi-dimensional dataset into a flat table that can be saved to CSV, excel, etc.

Tip: Do this in Jupyter Notebook, do just till .get_xarray() and then print the variable directly in a cell. It's beautiful.

More extended tutorial in the author's blog: https://saswatanandi.github.io/softwares/imdlib/

Database loading program : imd_grid_import

  • A script (2 actually) to fetch the gridded data downloads from IMD, process it and load into a local dockerized PostGreSQL DB. See the Readme in the imd_grid_import/ folder for more details.

Database structure explainer

  • Update: Separate temperature data tables made; same structure, but with just temperature data which is smaller and will be faster to query.
  • Even after removing all junk data, there's a v.large number of datapoints per yr - around 1.18 Million. Granularity: per date and location.
  • Loading each of these into DB takes more time, occupies huge space and even fetching them takes v.long
  • Nature of fetching data: Most likely we'll never be fetching just one date's data (like: 2020-01-14) at a time. More likely we'll be fetching for a whole month at a go at least, but for an individual location.
  • So, it makes sense to group the data by : Year + month + Location, and store the grouped data in a JSON column.
  • Sample data in DB for Grid location (28.5,72.5) , Jan 2020:
{"2020-01-01": {"rain": 0.0, "tmax": 17.580678939819336, "tmin": 3.262223720550537},
 "2020-01-02": {"rain": 0.0, "tmax": 20.557445526123047, "tmin": 6.12726354598999},
 "2020-01-03": {"rain": 0.0, "tmax": 21.97892951965332, "tmin": 7.391693115234375},
 "2020-01-04": {"rain": 0.0, "tmax": 22.463241577148438, "tmin": 7.331312656402588},
 "2020-01-05": {"rain": 0.0, "tmax": 22.185802459716797, "tmin": 7.799867630004883},
 "2020-01-06": {"rain": 0.0, "tmax": 19.416574478149414, "tmin": 10.629579544067383},
 "2020-01-07": {"rain": 0.0, "tmax": 18.216487884521484, "tmin": 10.342350959777832},
 "2020-01-08": {"rain": 0.2756316661834717, "tmax": 17.91546058654785, "tmin": 9.598325729370117},
 "2020-01-09": {"rain": 0.0, "tmax": 18.36847496032715, "tmin": 4.737661838531494},
 "2020-01-10": {"rain": 0.0, "tmax": 19.597763061523438, "tmin": 3.922478437423706},
 "2020-01-11": {"rain": 0.0, "tmax": 21.578903198242188, "tmin": 6.793002605438232},
 "2020-01-12": {"rain": 0.0, "tmax": 23.62282943725586, "tmin": 8.204022407531738},
 "2020-01-13": {"rain": 7.230362892150879, "tmax": 17.89722442626953, "tmin": 11.31865119934082},
 "2020-01-14": {"rain": 0.5124186873435974, "tmax": 17.625137329101562, "tmin": 5.582608222961426},
 "2020-01-15": {"rain": 0.0, "tmax": 17.577001571655273, "tmin": 4.793914794921875},
 "2020-01-16": {"rain": 0.0, "tmax": 16.759170532226562, "tmin": 6.7936177253723145},
 "2020-01-17": {"rain": 0.0, "tmax": 19.58401870727539, "tmin": 5.236929416656494},
 "2020-01-18": {"rain": 0.0, "tmax": 19.54751205444336, "tmin": 5.679737567901611},
 "2020-01-19": {"rain": 0.0, "tmax": 18.521821975708008, "tmin": 5.7684712409973145},
 "2020-01-20": {"rain": 0.0, "tmax": 19.22909164428711, "tmin": 6.524430751800537},
 "2020-01-21": {"rain": 0.0, "tmax": 21.767934799194336, "tmin": 8.751236915588379},
 "2020-01-22": {"rain": 0.0, "tmax": 21.532318115234375, "tmin": 8.174297332763672},
 "2020-01-23": {"rain": 0.0, "tmax": 21.776113510131836, "tmin": 7.345406532287598},
 "2020-01-24": {"rain": 0.0, "tmax": 22.189123153686523, "tmin": 6.468899250030518},
 "2020-01-25": {"rain": 0.0, "tmax": 24.130014419555664, "tmin": 6.97148323059082},
 "2020-01-26": {"rain": 0.0, "tmax": 25.91004180908203, "tmin": 7.372500896453857},
 "2020-01-27": {"rain": 0.0, "tmax": 23.614274978637695, "tmin": 11.573892593383789},
 "2020-01-28": {"rain": 7.257974147796631, "tmax": 19.39422607421875, "tmin": 11.302903175354004},
 "2020-01-29": {"rain": 0.0, "tmax": 21.57762336730957, "tmin": 6.99928092956543},
 "2020-01-30": {"rain": 0.0, "tmax": 21.596620559692383, "tmin": 7.587302207946777},
 "2020-01-31": {"rain": 0.0, "tmax": 21.153125762939453, "tmin": 6.719666004180908}}
  • With one line, this dict can be turned into a flat pandas dataframe table in python:
    df = pd.DataFrame(data).transpose().reset_index().rename(columns={'index':'date'})
  • Like this, the number of rows in DB for one year reduces from 1.81M to around 60k : reduction to around 3% or by 30x.
  • This results in a lot faster speed in retrieving the data from DB, doing geospatial queries etc.
  • The entire IMD gridded dataset is in DB in 7,247,891 (~7.2M) rows.

Note: tmax and tmin were available at lower grid resolution than rainfall data, so in the DB table imd_data there will be locations that only have rainfall data.

Update: separate temperature tables added

imd_temp_data and temp_grid tables contain data and grid locations respectively of just the temperature records. They're much smaller in quantity than the rain records, so use these if you only want temperature data.

Downloaded data checksums

  • See sha256_checksum_rain.txt, sha256_checksum_tmax.txt, sha256_checksum_tmin.txt files in this repo to see the checksums of the downloaded .grd data from IMD site.
  • This can be used to cross-check data authenticity / detect if there have been changes in the data published in the website after July 2022 when I had downloaded them.
  • It's good practice for the publishing site to publish these checksums next to their data, to give end users a way to ensure there's been no file corruption or middle-player manipulation. Recommending IMD site to do this.

Sample notebooks

Check out the .ipynb Jupyter notebooks (python3 programs) here showing sample code to work with the data in Database once you have it ready.

Sample viz

For location 18.5,74.0 nr Pune, India, cumulative monthly rainfall from 1901 to 2021:

rainV_18.5,74.0.png

See 2022-07-14 rainfal viz 1.ipynb for the code that made this.