Skip to content

anson2004110/ICRA-2019-SLAM-Paper-List

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 

Repository files navigation

ICRA 2019 SLAM相关Paper List

  1. Deep Learning Session

1.1 E2E-VO/ SLAM

GEN-SLAM: Generative Modeling for Monocular Simultaneous Localization and Mapping(深度学习位姿和深度图)

Keywords: SLAM, Localization, Visual-Based Navigation

Beyond Photometric Loss for Self-Supervised Ego-Motion Estimation(深度学习,自监督的深度和里程计,参考了GeoNet和SfmLearner)

Keywords: SLAM, Visual Learning, Localization

代码: https://github.com/hlzz/DeepMatchVO

Learning Monocular Visual Odometry through Geometry-Aware Curriculum Learning(深度学习的VO)

Keywords: Localization, Visual Learning, Deep Learning in Robotics and Automation

GANVO: Unsupervised Deep Monocular Visual Odometry and Depth Estimation with Generative Adversarial Networks(深度学习 基于GAN的无监督深度和VO方法)

Keywords: Deep Learning in Robotics and Automation, Localization, Visual Tracking

Unsupervised Learning of Monocular Depth and Ego-Motion Using Multiple Masks(无监督深度学习的深度图和位姿网络)

Keywords: Deep Learning in Robotics and Automation, SLAM

1.2 E2E Navigation

(AWARD)Variational End-To-End Navigation and Localization(端到端定位导航)

Keywords: Deep Learning in Robotics and Automation, Computer Vision for Transportation, Autonomous Vehicle Navigation

Deep Reinforcement Learning of Navigation in a Complex and Crowded Environment with a Limited Field of View(强化学习机器人视觉导航)

Keywords: Deep Learning in Robotics and Automation, Collision Avoidance, Service Robots

Generalization through Simulation: Integrating Simulated and Real Data into Deep Reinforcement Learning for Vision-Based Autonomous Flight(强化学习的无人机自主导航)

Keywords: Deep Learning in Robotics and Automation

代码 https://github.com/gkahn13/GtS

1.3 Feature & VPR

(AWARD)Learning Scene Geometry for Visual Localization in Challenging Conditions (RGB和Depth中找出场景的结构化描述特征用于VPR)

Keywords: Localization, RGB-D Perception, Computer Vision for Other Robotic Applications

Localizing Discriminative Visual Landmarks for Place Recognition(VPR路标的显著性检测)

Keywords: Localization, Visual-Based Navigation, Computer Vision for Automation

Improving Keypoint Matching Using a Landmark-Based Image Representation(深度学习地标区域描述符和特征点匹配)

Keywords: SLAM, Localization

A Comparison of CNN-Based and Hand-Crafted Keypoint Descriptors(传统和深度学习特征描述子的光照和角度变化下的性能分析)

Keywords: SLAM, Visual-Based Navigation, Deep Learning in Robotics and Automation

A Multi-Domain Feature Learning Method for Visual Place Recognition(迁移学习的特征学习用于场景识别)

Keywords: Localization, SLAM, Performance Evaluation and Benchmarking

Night-To-Day Image Translation for Retrieval-Based Localization(图像迁移方法的的位置定位)

Keywords: Localization, Visual Learning, Autonomous Vehicle Navigation

2D3D-MatchNet: Learning to Match Keypoints across 2D Image and 3D Point Cloud(深度学习,2D3D数据下的匹配特征点提取网络) Feng, Mengdan National University of Singapore

Keywords: Deep Learning in Robotics and Automation, Visual Learning, Localization

Look No Deeper: Recognizing Places from Opposing Viewpoints under Varying Scene Appearance Using Single-View Depth Estimation(用深度学习的深度预测来完成反向视角下的VPR)

Keywords: Localization, Deep Learning in Robotics and Automation

Multi-Process Fusion: Visual Place Recognition Using Multiple Image Processing Methods——IRAL(图像上多信息融合做VPR)

Keywords: Localization, Visual-Based Navigation

1.4 Depth & Disparity

(AWARD)Geo-Supervised Visual Depth Prediction(深度图网络)

Keywords: Visual Learning, Sensor Fusion

代码 https://github.com/feixh/GeoSup

FastDepth: Fast Monocular Depth Estimation on Embedded Systems(178fps TX2上的224x224深度图计算方法)

Keywords: Deep Learning in Robotics and Automation, Range Sensing, Computer Vision for Other Robotic Applications

代码 http://fastdepth.mit.edu https://github.com/dwofk/fast-depth

SuperDepth: Self-Supervised, Super-Resolved Monocular Depth Estimation

Keywords: Deep Learning in Robotics and Automation, Visual Learning, Mapping

Depth Completion with Deep Geometry and Context Guidance(稀疏深度图补齐网络)

Keywords: RGB-D Perception, Computer Vision for Other Robotic Applications

Self-Supervised Sparse-To-Dense: Self-Supervised Depth Completion from LiDAR and Monocular Camera(自监督学习的Lidar深度数据补齐)

Keywords: Visual Learning, RGB-D Perception, Sensor Fusion

代码 https://github.com/fangchangma/self-supervised-depth-completion

Self-Supervised Learning for Single View Depth and Surface Normal Estimation(自监督的深度和法向图估计)

Keywords: Deep Learning in Robotics and Automation, Visual Learning, Mapping

Plug-And-Play: Improve Depth Prediction Via Sparse Data Propagation(循环优化深度图)

Keywords: Deep Learning in Robotics and Automation, RGB-D Perception, Computer Vision for Automation

Depth Generation Network: Estimating Real World Depth from Stereo and Depth Images(左右图生成深度图网络)

Keywords: AI-Based Methods, RGB-D Perception, Range Sensing

Anytime Stereo Image Depth Estimation on Mobile Devices(双目深度图匹配计算方法,快速)

Keywords: Deep Learning in Robotics and Automation, Computer Vision for Automation, Computer Vision for Other Robotic Applications

代码 https://github.com/mileyan/AnyNet

UWStereoNet: Unsupervised Learning for Depth Estimation and Color Correction of Underwater Stereo Imagery(深度学习的双目立体匹配)

Keywords: Marine Robotics, Deep Learning in Robotics and Automation, Computer Vision for Other Robotic Applications

Real-Time Joint Semantic Segmentation and Depth Estimation Using Asymmetric Annotations(深度学习语义和深度的分割网络)

Keywords: Visual Learning, Semantic Scene Understanding, SLAM

代码 https://github.com/DrSleep/multi-task-refinenet

DSNet: Joint Learning for Scene Segmentation and Disparity Estimation(深度学习左右图估计语义分割和深度图)

Keywords: Semantic Scene Understanding, Deep Learning in Robotics and Automation, Object Detection, Segmentation and Categorization

SweepNet: Wide-Baseline Omnidirectional Depth Estimation(宽基线,多摄像头的深度估计方法)

Keywords: Omnidirectional Vision, Computer Vision for Automation, Deep Learning in Robotics and Automation

A Supervised Approach to Predicting Noise in Depth Images(预测深度图的噪声区域)

Keywords: RGB-D Perception, Perception for Grasping and Manipulation, Deep Learning in Robotics and Automation

1.5 Point Cloud Segmentation

SqueezeSegV2: Improved Model Structure and Unsupervised Domain Adaptation for Road-Object Segmentation from a LiDAR Point Cloud (深度学习,雷达数据分割路面上的物体)

Keywords: Object Detection, Segmentation and Categorization, Semantic Scene Understanding, AI-Based Methods

https://github.com/BichenWuUCB/SqueezeSeg https://github.com/xuanyuzhou98/SqueezeSegV2

Hierarchical Depthwise Graph Convolutional Neural Network for 3D Semantic Segmentation of Point Clouds(点云语义分割方法)

Keywords: Semantic Scene Understanding, AI-Based Methods, RGB-D Perception

1.6 Autonomous Vehicle

Learning to Drive from Simulation without Real World Labels(自动驾驶中的学习方法)

Keywords: Deep Learning in Robotics and Automation, Visual Learning, Learning from Demonstration

Learning to Drive in a Day(强化学习的自动驾驶)

Keywords: AI-Based Methods, Deep Learning in Robotics and Automation, Computer Vision for Transportation

Building a Winning Self-Driving Car in Six Months(与Uber 合作的自动驾驶平台)

Keywords: Autonomous Vehicle Navigation, Intelligent Transportation Systems, Computer Vision for Transportation

Multimodal Spatio-Temporal Information in End-To-End Networks for Automotive Steering Prediction (BMW合作的自动驾驶)

Keywords: Autonomous Vehicle Navigation, Deep Learning in Robotics and Automation, Visual Learning

Monocular Semantic Occupancy Grid Mapping with Convolutional Variational Encoder-Decoder Networks——IRAL(单目图生成避障图)

Keywords: Semantic Scene Understanding, Object Detection, Segmentation and Categorization, Computer Vision for Transportation

2.Deep Learning + Traditional SLAM Session

2.1 SLAM

CNN-SVO: Improving the Mapping in Semi-Direct Visual Odometry Using Single-Image Depth Prediction(深度学习,CNN参与深度估计,并且用于SVO)

Keywords: SLAM, Localization, Visual Learning

https://github.com/yan99033/CNN-SVO

Real-Time Monocular Object-Model Aware Sparse SLAM(深度学习,语义物体SLAM)

Keywords: SLAM

Semantic Mapping for View-Invariant Relocalization(物体关联的SLAM,可以对视角变化的重定位鲁棒)

Keywords: Semantic Scene Understanding, Visual-Based Navigation, SLAM

A Unified Framework for Mutual Improvement of SLAM and Semantic Segmentation(语义和SLAM相互促进的方法)

Keywords: SLAM, Object Detection, Segmentation and Categorization, RGB-D Perception

Multimodal Semantic SLAM with Probabilistic Data Association(图优化,地图数据关联)

Keywords: SLAM, Visual-Based Navigation, Localization

Efficient Constellation-Based Map-Merging for Semantic SLAM(数据关联,地图的点的融合和语义slam)

Keywords: SLAM, Localization, Autonomous Vehicle Navigation

Enhancing V-SLAM Keyframe Selection with an Efficient ConvNet for Semantic Analysis(深度学习,根据图像质量和语义信息选择关键帧)

Keywords: Computer Vision for Other Robotic Applications, Semantic Scene Understanding, Deep Learning in Robotics and Automation

https://github.com/Shathe/MiniNet

Pose Graph Optimization for Unsupervised Monocular Visual Odometry(深度学习VO和传统图优化方法结合)

Keywords: Deep Learning in Robotics and Automation, SLAM, Localization

Learning Wheel Odometry and IMU Errors for Localization(里程计和IMU融合定位)

Keywords: Localization, Deep Learning in Robotics and Automation, Autonomous Vehicle Navigation

https://github.com/CAOR-MINES-ParisTech/lwoi

Global Localization with Object-Level Semantics and Topology(3D语义地图的重定位,利用物体的拓扑关系完成数据关联)

Keywords: Localization, Semantic Scene Understanding, Computer Vision for Other Robotic Applications

Robust Object-Based SLAM for High-Speed Autonomous Navigation(基于平面上物体的SLAM)

Keywords: Aerial Systems: Perception and Autonomy, Autonomous Vehicle Navigation, Mapping

2.2 Mapping & 3D Reconstruction

MID-Fusion: Octree-Based Object-Level Multi-Instance Dynamic SLAM (深度学习,语义的三维重建,去除动态物体,跟踪相机和物体的位姿)

Keywords: SLAM, Mapping, RGB-D Perception

Probabilistic Projective Association and Semantic Guided Relocalization for Dense Reconstruction(语义信息促进SLAM建图的工作,SLAM中的跟踪和回环用到了语义的分割结果)

Keywords: SLAM, RGB-D Perception, Object Detection, Segmentation and Categorization

Dense 3D Visual Mapping Via Semantic Simplification(3D重建中的物体分类,用于判断哪些点需要细节,哪些点就只需要简化)

Keywords: Mapping, Semantic Scene Understanding

DeepFusion: Real-Time Dense 3D Reconstruction for Monocular SLAM Using Single-View Depth and Gradient Predictions(深度学习,用CNN预计的depth来完成关键帧深度的估计,从而结合slam完成密集三维重建)

Keywords: SLAM, Deep Learning in Robotics and Automation, Mapping

Sparse2Dense: From Direct Sparse Odometry to Dense 3D Reconstruction—IRAL (深度学习,稀疏到密集的三维重建,CNN估计深度,法向图用于密集重建)

Keywords: SLAM, Mapping, Visual Learning

  1. Traditional SLAM Session

3.1 SLAM——Direct, 2D/3D feature, Lidar SLAM

FMD Stereo SLAM: Fusing MVG and Direct Formulation towards Accurate and Fast Stereo SLAM(中科院,特征点法和直接法结合)

Keywords: SLAM, Localization, Mapping

RESLAM: A Real-Time Robust Edge-Based SLAM System (边缘SLAM)

Keywords: SLAM, Visual-Based Navigation, RGB-D Perception

代码: https://github.com/fabianschenk/RESLAM https://github.com/fabianschenk/REVO

Leveraging Structural Regularity of Atlanta World for Monocular SLAM(Atlanta世界坐标系下的边缘线约束SLAM)

Keywords: SLAM, Localization, Mapping

Illumination Robust Monocular Direct Visual Odometry for Outdoor Environment Mapping(抗光照变化的直接法视觉里程计)

Loosely-Coupled Semi-Direct Monocular SLAM——IRAL(直接法跟踪,特征点法做地图优化和回环)

Keywords: SLAM, Localization, Mapping

代码 https://github.com/sunghoon031/LCSD_SLAM

3D Keypoint Repeatability for Heterogeneous Multi-Robot SLAM(多机器人系统的不同传感器的特征点匹配,3D关键点KPQ-SI和NARF两个特征点比较适合用于Loopclosure和多机器人重定位中)

Keywords: SLAM, Performance Evaluation and Benchmarking, Mapping

Local Descriptor for Robust Place Recognition Using LiDAR Intensity——IRAL (ISHOT点云描述子用于定位)

Keywords: Localization, Field Robots, Autonomous Vehicle Navigation

1-Day Learning, 1-Year Localization: Long-Term LiDAR Localization Using Scan Context Image——IRAL(激光雷达的长期定位方法)

Keywords: Localization, Range Sensing, SLAM

3.2 SLAM——Pose Optimization

On-Line 3D Active Pose-Graph SLAM Based on Key Poses Using Graph Topology and Sub-Maps(位姿优化,子地图)

Keywords: SLAM, Motion and Path Planning

MH-iSAM2: Multi-Hypothesis iSAM Using Bayes Tree and Hypo-Tree(非线性增量优化,解决SLAM歧义)

Keywords: SLAM, Localization, Mapping

Visual SLAM: Why Bundle Adjust?(BA的替代优化方法,解决纯旋转和弱平移下的位姿估计)

Keywords: SLAM

Modeling Perceptual Aliasing in SLAM Via Discrete-Continuous Graphical Models——IRAL (离散连续图模型的优化方法)

Keywords: SLAM, Sensor Fusion, Optimization and Optimal Control

POSEAMM: A Unified Framework for Solving Pose Problems Using an Alternating Minimization Method(使用交替最小化方法解决姿势优化问题的统一框架)

Keywords: Computer Vision for Automation, Omnidirectional Vision, Localization

Visual-Odometric Localization and Mapping for Ground Vehicles Using SE(2)-XYZ Constraints(平面移动机器人的位姿估计约束模型)

Keywords: Localization, SLAM, Sensor Fusion

https://github.com/izhengfan/se2lam

Direct Relative Edge Optimization, a Robust Alternative for Pose Graph Optimization(边缘约束的图优化)

Keywords: SLAM, Mapping, Multi-Robot Systems

A White-Noise-On-Jerk Motion Prior for Continuous-Time Trajectory Estimation on SE(3) (位姿估计方法)

Keywords: SLAM

Low-Latency Visual SLAM with Appearance-Enhanced Local Map Building(一种快速局部地图的策略)

Keywords: SLAM

3.3 SLAM——VIO/ VISLAM

Fast and Robust Initialization for Visual-Inertial SLAM(VINS初始化)

Keywords: SLAM, Mapping, Localization

Visual-Inertial Navigation: A Concise Review

Keywords: Autonomous Vehicle Navigation, Localization, Sensor Fusion

https://github.com/rpng

Tightly-Coupled Aided Inertial Navigation with Point and Plane Features(点面特征的VINS系统)

Keywords: Range Sensing, Sensor Fusion, SLAM

Tightly-Coupled Visual-Inertial Localization and 3D Rigid-Body Target Tracking——IRAL(VINS和跟踪物体紧融合)

Keywords: Localization, Visual Tracking, SLAM

Aided Inertial Navigation: Unified Feature Representations and Observability Analysis(点,线,面多特征融合的VINS系统)

Keywords: Localization, SLAM, Visual-Based Navigation

A Linear-Complexity EKF for Visual-Inertial Navigation with Loop Closures(一种MSCKF的VINS方法,带回环)

Keywords: Localization, SLAM, Mapping

Multi-Camera Visual-Inertial Navigation with Online Intrinsic and Extrinsic Calibration(多相机VINS系统的在线标定相机,IMU内外参数方法)

Keywords: Visual-Based Navigation, Sensor Fusion, Localization

Sensor-Failure-Resilient Multi-IMU Visual-Inertial Navigation(一种多IMU的VINS系统)

Keywords: Localization, SLAM, Failure Detection and Recovery

Efficient 2D-3D Matching for Multi-Camera Visual Localization(多camera imu的重定位)

Keywords: Localization, Computer Vision for Transportation, Omnidirectional Vision

Keyframe-Based Direct Thermal–Inertial Odometry(低质量图像下的VIO方法,基于关键帧的直接法,可以借鉴他借鉴低照度下的vo问题)

Keywords: Localization, Sensor Fusion, Field Robots

Improving the Robustness of Visual-Inertial Extended Kalman Filtering(VINS 系统姿态估计提升方案)

Keywords: Visual-Based Navigation, Aerial Systems: Perception and Autonomy, Robust/Adaptive Control of Robotic Systems

Towards Fully Dense Direct Filter-Based Monocular Visual-Inertial Odometry(密集直接法VINS系统)

Keywords: Sensor Fusion, Visual-Based Navigation, Localization

Experimental Comparison of Visual-Aided Odometry Methods for Rail Vehicles—IRAL (在火车的数据集上实验比对VO、VIO方法)

Keywords: Computer Vision for Transportation, Intelligent Transportation Systems, SLAM

RaD-VIO: Rangefinder-Aided Downward Visual-Inertial Odometry(测距融合VIO)

Keywords: Aerial Systems: Perception and Autonomy, Localization, Performance Evaluation and Benchmarking

3.4 SLAM——Multi-sensor Fusion

Accurate Direct Visual-Laser Odometry with Explicit Occlusion Handling and Plane Detection(激光雷达融合视觉定位,区分平面和非平面的特征点)

Keywords: SLAM, Localization

Robust Pose-Graph SLAM Using Absolute Orientation Sensing(激光雷达+天花板摄像头SLAM)

Keywords: SLAM, Industrial Robots

Tightly Coupled 3D Lidar Inertial Odometry and Mapping(雷达和IMU融合)

Keywords: Computer Vision for Automation, Sensor Fusion, SLAM

IN2LAMA: INertial Lidar Localisation and Mapping(IMU和Lidar融合的SLAM)

Keywords: Mapping, SLAM, Sensor Fusion

ROVO: Robust Omnidirectional Visual Odometry for Wide-Baseline Wide-FOV Camera Systems(多鱼眼SLAM)

Keywords: SLAM, Omnidirectional Vision, Autonomous Vehicle Navigation

3.5 Depth & Mapping & 3D Reconstruction

ScalableFusion: High-Resolution Mesh-Based Real-Time 3D Reconstruction(三维重建)

Keywords: SLAM, Mapping, RGB-D Perception

Surfel-Based Dense RGB-D Reconstruction with Global and Local Consistency(用SFM计算全局的关键帧位姿,同时用slam方法计算局部相邻帧的位姿,然后用FGO factor graph optimization方法将全局和局部信息融合计算出密集三维重建)

Keywords: SLAM, Localization, Mapping

Real-Time Scalable Dense Surfel Mapping

Keywords: Mapping, Sensor Fusion, Aerial Systems: Perception and Autonomy

代码 https://github.com/HKUST-Aerial-Robotics/DenseSurfelMapping

Real-Time Dense Mapping for Self-Driving Vehicles Using Fisheye Cameras(鱼眼相机的密集三维重建)

Keywords: Mapping, Computer Vision for Transportation, Omnidirectional Vision

https://zhpcui.github.io/projects/arxiv18_densemapping/

Real Time Dense Depth Estimation by Fusing Stereo with Sparse Depth Measurements(用TOF辅助双目密集匹配算法)

Keywords: Range Sensing, Aerial Systems: Perception and Autonomy

Dense Surface Reconstruction from Monocular Vision and LiDAR(雷达和视觉融合三维重建)

Keywords: Mapping, SLAM, Range Sensing

Incremental Visual-Inertial 3D Mesh Generation with Structural Regularities(VIO输出的稀疏点做三维重建的三角面片)

Keywords: SLAM, Visual-Based Navigation, Sensor Fusion

OVPC Mesh: 3D Free-Space Representation for Local Ground Vehicle Navigation(3D Mesh表示方法,用于无人车避障)

Keywords: Autonomous Vehicle Navigation, Field Robots, Mapping

KO-Fusion: Dense Visual SLAM with Tightly-Coupled Kinematic and Odometric Tracking(机器人运动学与里程计结合的密集三维重建)

Keywords: SLAM, Sensor Fusion, Kinematics

3D Surface Reconstruction Using a Two-Step Stereo Matching Method Assisted with Five Projected Patterns(三维双目结构光重建设备)

Keywords: Computer Vision for Automation, Range Sensing, Computer Vision for Other Robotic Applications

3.6 Localization——Lidar / Vision

Beyond Point Clouds: Fisher Information Field for Active Visual Localization(3D landmark来做视觉定位)

Keywords: Visual-Based Navigation, Localization, Motion and Path Planning

Effective Visual Place Recognition Using Multi-Sequence Maps—IRAL(场景识别定位)

Keywords: Localization

MRS-VPR: A Multi-Resolution Sampling Based Visual Place Recognition Method(场景识别和回环检测,高效、多尺度、粗到细的长期序列VPR)

Keywords: SLAM, Deep Learning in Robotics and Automation, Visual Learning

Probabilistic Appearance-Based Place Recognition through Bag of Tracked Words——IRAL (BTW场景定位)

Keywords: SLAM, Visual-Based Navigation, Recognition

Geometric Relation Distribution for Place Recognition——IRAL(激光雷达的重定位和回环)

Keywords: Mapping, Localization, Range Sensing

代码 https://github.com/dlr1516/grd

3.7 Others

A-SLAM: Human-In-The-Loop Augmented SLAM(交互式SLAM地图和位姿修正方法)

Keywords: SLAM, Virtual Reality and Interfaces, Wheeled Robots

Iteratively Reweighted Midpoint Method for Fast Multiple View Triangulation——IRAL (三角化误差消除方法)

Keywords: SLAM, Mapping

CELLO-3D: Estimating the Covariance of ICP in the Real World(点云ICP)

Keywords: SLAM, Range Sensing, Learning and Adaptive Systems

  1. SLAM Evaluation & Datasets

The Open Vision Computer: An Integrated Sensing and Compute System for Mobile Robots(宾夕法尼亚大学无人机 集成化方案)

Keywords: Aerial Systems: Perception and Autonomy

SLAMBench 3.0: Systematic Automated Reproducible Evaluation of SLAM Systems for Robot Vision Challenges and Scene Understanding(SLAM方法和数据集)

Keywords: SLAM, Performance Evaluation and Benchmarking, Semantic Scene Understanding

Project AutoVision: Localization and 3D Scene Perception for an Autonomous Vehicle with a Multi-Camera System(自动驾驶系统,数据,GNSS+IMU+Camera的稀疏建图和定位)

BLVD: Building a Large-Scale 5D Semantics Benchmark for Autonomous Driving

Keywords: Performance Evaluation and Benchmarking, Intelligent Transportation Systems

https://github.com/VCCIV/BLVD/

Characterizing Visual Localization and Mapping Datasets(RGBD数据集)

Keywords: Performance Evaluation and Benchmarking, SLAM

Are We Ready for Autonomous Drone Racing? the UZH-FPV Drone Racing Dataset(stereo camera,event-camera数据集)

Keywords: Performance Evaluation and Benchmarking, Localization, Aerial Systems: Perception and Autonomy

An Empirical Evaluation of Ten Depth Cameras for Indoor Environments——IRAM IEEE Robotics & Automation Magazine (深度传感器的评测)

Keywords: Performance Evaluation and Benchmarking, Range Sensing, RGB-D Perception

  1. ICRA AWARD list

Making Sense of Vision and Touch: Self-Supervised Learning of Multimodal Representations for Contact-Rich Tasks(触觉,视觉反馈的机器人装配)

Keywords: Deep Learning in Robotics and Automation, Perception for Grasping and Manipulation, Sensor-based Control

Closing the Sim-To-Real Loop: Adapting Simulation Randomization with Real World Experience(虚拟数据到真实数据的迁移)

Keywords: Learning and Adaptive Systems, Model Learning for Control, Deep Learning in Robotics and Automation

About

ICRA 2019 SLAM paper list

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published