Official implementation of Simplifying Surrogate Models for Transferable Graph Poisoning Attacks on Link Prediction
Built based on GCA, DeepRobust, Viking, CLGA
Tested on pytorch 1.7.1 and torch_geometric 1.6.3.
1.To produce availability attack with STAA
python main.py --dataset Cora --attack_method aalp --exp_type poisoning --device cuda:0 --attack_rate 0.05 --seed 2 --lp_model deepwalk --attack_goal='availability'
2.To produce Integrity attack with STAA
python main.py --dataset CiteSeer --attack_method aalp --exp_type poisoning --device cuda:0 --attack_rate 0.1 --seed 2 --lp_model deepwalk --attack_goal='integrity'
3.To run clean experiments
python main.py --dataset Cora --lp_model metamodel --exp_type clean --device cuda:0 --seed 1
4.To produce all experiments, pealse config scripts in ./run/
bash ./run/run_poisoning.sh