Skip to content

anonymousaccept/STAA

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Simplifying Surrogate Models for Transferable Graph Poisoning Attacks on Link Prediction

Official implementation of Simplifying Surrogate Models for Transferable Graph Poisoning Attacks on Link Prediction

Built based on GCA, DeepRobust, Viking, CLGA

Requirements

Tested on pytorch 1.7.1 and torch_geometric 1.6.3.

Usage

1.To produce availability attack with STAA

python main.py --dataset Cora --attack_method aalp --exp_type poisoning --device cuda:0 --attack_rate 0.05 --seed 2 --lp_model deepwalk  --attack_goal='availability'

2.To produce Integrity attack with STAA

python main.py --dataset CiteSeer --attack_method aalp --exp_type poisoning --device cuda:0 --attack_rate 0.1 --seed 2 --lp_model deepwalk  --attack_goal='integrity'

3.To run clean experiments

python main.py --dataset Cora --lp_model metamodel --exp_type clean --device cuda:0 --seed 1

4.To produce all experiments, pealse config scripts in ./run/

bash ./run/run_poisoning.sh 

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published