Skip to content

Commit

Permalink
[topi] add ARM v8.2 udot (uint8) support (apache#3978)
Browse files Browse the repository at this point in the history
* [topi] add ARM v8.2 udot (uint8) support

* fix test case

* fix common conv2d schedule

* add back fp32_time in test

* fix lint

* fix doc, add support for int32_lanes=4, signed int

* fix lint

* add ic_bn % 4 checker in schedule
  • Loading branch information
yzhliu authored and Animesh Jain committed Oct 17, 2019
1 parent 72bac85 commit bec18d5
Show file tree
Hide file tree
Showing 9 changed files with 633 additions and 171 deletions.
1 change: 1 addition & 0 deletions topi/python/topi/arm_cpu/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,7 @@
from . import conv2d
from . import depthwise_conv2d
from . import conv2d_transpose
from . import conv2d_int8
from . import bitserial_conv2d
from . import bitserial_dense
from . import injective
112 changes: 112 additions & 0 deletions topi/python/topi/arm_cpu/conv2d_int8.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,112 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# pylint: disable=invalid-name,unused-variable,unused-argument,no-member
"""Conv2D int8 schedule on ARM"""

import tvm
from tvm import autotvm
from .. import generic, tag
from ..util import get_const_tuple
from ..nn.conv2d import conv2d_NCHWc_int8
from ..generic import conv2d as conv2d_generic
from .. import nn
from ..nn.conv2d import _get_workload as _get_conv2d_workload
from .tensor_intrin import dot_int8_int8_int32


def _get_default_config(cfg, data, kernel, strides, padding, out_dtype):
"""
Get default int8 schedule config for the workload
"""
wkl = _get_conv2d_workload(data, kernel, strides, padding, out_dtype)
is_kernel_1x1 = wkl.hkernel == 1 and wkl.wkernel == 1
if is_kernel_1x1:
conv2d_generic.fallback_schedule_cpu_1x1_int8(
cfg, wkl, int32_lanes=2, num_int8_elements=4)
else:
conv2d_generic.fallback_schedule_cpu_common_int8(
cfg, wkl, int32_lanes=2, num_int8_elements=4)


@autotvm.register_topi_compute(conv2d_NCHWc_int8, ['arm_cpu'], 'direct')
def _declaration_conv_NCHWc_int8(cfg, data, kernel, strides,
padding, dilation, layout, out_layout, out_dtype):
# layout and out_layout are not used here,
# we keep them for debug convenience when dumping autotvm workload
n, ic_chunk, ih, iw, ic_bn = get_const_tuple(data.shape)
in_channel = ic_chunk * ic_bn

oc_chunk, ic_chunk, kh, kw, ic_bn, oc_bn, n_elems = get_const_tuple(kernel.shape)
num_filter = oc_chunk * oc_bn

# If no config was set, we can fallback to NCHW config.
if cfg.is_fallback:
_get_default_config(cfg, tvm.placeholder((n, in_channel, ih, iw), dtype=data.dtype),
tvm.placeholder((num_filter, in_channel, kh, kw), dtype=kernel.dtype),
strides, padding, out_dtype)
return nn.conv2d_NCHWc_int8_compute(data,
kernel,
strides,
padding,
dilation,
layout,
out_layout,
out_dtype)


@autotvm.register_topi_schedule(generic.schedule_conv2d_NCHWc_int8, ['arm_cpu'], ['direct'])
def _schedule_conv2d_NCHWc_int8(cfg, outs):
"""Create schedule for tensors"""
s = tvm.create_schedule([x.op for x in outs])
scheduled_ops = []

def traverse(op):
"""Traverse operators from computation graph"""
# inline all one-to-one-mapping operators except the last stage (output)
if tag.is_broadcast(op.tag):
if op not in s.outputs:
s[op].compute_inline()
for tensor in op.input_tensors:
if isinstance(tensor.op, tvm.tensor.ComputeOp) and tensor.op not in scheduled_ops:
traverse(tensor.op)

if 'conv2d_NCHWc_int8' in op.tag:
conv_out = op.output(0)
kernel = conv_out.op.input_tensors[1]
data_vec = conv_out.op.input_tensors[0]
data = data_vec.op.input_tensors[0] \
if isinstance(data_vec.op, tvm.tensor.ComputeOp) and "pad" not in data_vec.op.tag \
else data_vec
if isinstance(data.op, tvm.tensor.ComputeOp) and "pad" in data.op.tag:
data_pad = data
data = data_pad.op.input_tensors[0]

args = [s, cfg, data_vec, conv_out, outs[0]]
# int8 conv kernel is 7-dim
_, _, kh, kw, _, _, _ = get_const_tuple(kernel.shape)
dtype = "uint" if data.dtype == "uint8" else "int"
if kh == 1 and kw == 1:
conv2d_generic.schedule_conv_NCHWc_cpu_1x1_int8(
*args, int32_lanes=4, intrin=dot_int8_int8_int32(int32_lanes=4, dtype=dtype))
else:
conv2d_generic.schedule_conv_NCHWc_cpu_common_int8(
*args, int32_lanes=4, intrin=dot_int8_int8_int32(int32_lanes=4, dtype=dtype))

scheduled_ops.append(op)

traverse(outs[0].op)
return s
110 changes: 110 additions & 0 deletions topi/python/topi/arm_cpu/tensor_intrin.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,110 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# pylint: disable=invalid-name,unused-variable,unused-argument,no-member
"""Conv2D int8 schedule on ARM"""

import tvm

def dot_int8_int8_int32(int32_lanes, dtype='uint'):
"""
Int8 dot product by every 4 elements using ARM v8.2 udot.
This function takes two arrays of int8 datatype -- data[4] and
kernel[int32_lanes][4] -- and computes a dot product of data[4] with every
4 elements of kernels, resulting in output[int32_lanes] of uint32 datatype.
The pseudo code is as follows.
.. code-block:: c
void dot_int8_int8_int32(int8 data[4], int8 kernel[16][4], int32 output[16]){
for (int i = 0; i < int32_lanes; i++){
out[i] = 0;
for (int k = 0; k < 4; k++){
out[i] += data[k] * kernel[i][k]
}
}
}
Physically, the kernel array sits in a vector register and
the data[4] is broadcasted to another vector register. This
function returns a TensorIntrin that can be used to tensorize
a schedule.
Parameters
----------
int32_lanes: int
How many int32/uint32 to produce
dtype: str, optional, {"uint", "int"}
Whether it works on unsigned int or signed int
Returns
-------
intrin : TensorIntrin
The ARM uint8 TensorIntrin that can be used in tensorizing schedule
"""
num_int8_elements = 4 # 4 int8 elements in int32

data = tvm.placeholder((num_int8_elements,), dtype='%s8' % dtype, name='data')
kernel = tvm.placeholder((int32_lanes, num_int8_elements), dtype='%s8' % dtype, name='kernel')

k = tvm.reduce_axis((0, num_int8_elements), name='k')
C = tvm.compute((int32_lanes,),
lambda i: tvm.sum(data[k].astype('%s32' % dtype) *
kernel[i, k].astype('%s32' % dtype),
axis=k), name="C")

a_buffer = tvm.decl_buffer(data.shape, dtype='%s8' % dtype, name="a_buffer",
offset_factor=1,
strides=[1])
b_buffer = tvm.decl_buffer(kernel.shape, dtype='%s8' % dtype, name="b_buffer",
offset_factor=1,
strides=[tvm.var('s'), 1])

def _intrin_func(ins, outs):
def _instr(index):
ib = tvm.ir_builder.create()
if index == 1:
ib.emit(outs[0].vstore(0, tvm.const(0, '%s32x%d' % (dtype, int32_lanes))))
return ib.get()

dtype_a = '%s8x%d' % (dtype, num_int8_elements)
dtype_b = '%s8x%d' % (dtype, int32_lanes * num_int8_elements)
dtype_c = '%s32x%d' % (dtype, int32_lanes)

a_int8 = ins[0].vload([0], dtype_a)
re_int32 = tvm.call_pure_intrin('%s32' % dtype, 'reinterpret', a_int8)
# broadcast a
vec_ai32 = re_int32.astype(dtype_c)

vec_a = tvm.call_pure_intrin(dtype_b, 'reinterpret', vec_ai32)
vec_b = ins[1].vload([0, 0], dtype_b)
vec_c = outs[0].vload([0], dtype_c)

inst = 'udot' if dtype == 'uint' else 'sdot'
inst = 'llvm.aarch64.neon.%s.v%di32.v%di8' % (
inst, int32_lanes, int32_lanes * num_int8_elements)
vdot = tvm.call_llvm_intrin(dtype_c,
inst,
tvm.const(2, 'uint32'),
vec_c, vec_a, vec_b)
ib.emit(outs[0].vstore(0, vdot))
return ib.get()

# body, reset, update
return _instr(0), _instr(1), _instr(2)

with tvm.build_config(offset_factor=1, partition_const_loop=True):
return tvm.decl_tensor_intrin(C.op, _intrin_func, binds={data:a_buffer, kernel:b_buffer})
Loading

0 comments on commit bec18d5

Please sign in to comment.