Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Added ome-tiff inference pipeline #8

Merged
merged 4 commits into from
Apr 11, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -38,6 +38,7 @@ dependencies = [
"ipywidgets",
"natsort",
"ipython",
"zarr",
]


Expand Down
75 changes: 18 additions & 57 deletions src/nimbus_inference/nimbus.py
Original file line number Diff line number Diff line change
@@ -1,11 +1,8 @@
from alpineer import io_utils, misc_utils
from skimage.util.shape import view_as_windows
import nimbus_inference
from nimbus_inference.utils import (
prepare_normalization_dict,
predict_fovs,
predict_ome_fovs,
nimbus_preprocess,
from nimbus_inference.utils import (prepare_normalization_dict,
predict_fovs, nimbus_preprocess, MultiplexDataset
)
from huggingface_hub import hf_hub_download
from nimbus_inference.unet import UNet
Expand Down Expand Up @@ -69,7 +66,7 @@ def segmentation_naming_convention(fov_path):
Returns:
seg_path (str): paths to segmentation fovs
"""
fov_name = os.path.basename(fov_path)
fov_name = os.path.basename(fov_path).replace(".ome.tiff", "")
return os.path.join(deepcell_output_dir, fov_name + "_whole_cell.tiff")

return segmentation_naming_convention
Expand All @@ -79,18 +76,15 @@ class Nimbus(nn.Module):
"""Nimbus application class for predicting marker activity for cells in multiplexed images."""

def __init__(
self, fov_paths, segmentation_naming_convention, output_dir, save_predictions=True,
include_channels=[], half_resolution=True, batch_size=4, test_time_aug=True,
input_shape=[1024, 1024], suffix=".tiff", device="auto",
self, dataset: MultiplexDataset, output_dir: str, save_predictions: bool=True,
half_resolution: bool=True, batch_size: int=4, test_time_aug: bool=True,
input_shape: list=[1024, 1024], device: str="auto",
):
"""Initializes a Nimbus Application.
Args:
fov_paths (list): List of paths to fovs to be analyzed.
segmentation_naming_convention (function): Function that returns the path to the
segmentation mask for a given fov path.
dataset (MultiplexDataset): Path to directory containing fovs.
output_dir (str): Path to directory to save output.
save_predictions (bool): Whether to save predictions.
include_channels (list): List of channels to include in analysis.
half_resolution (bool): Whether to run model on half resolution images.
batch_size (int): Batch size for model inference.
test_time_aug (bool): Whether to use test time augmentation.
Expand All @@ -100,17 +94,14 @@ def __init__(
, with "cpu" as a fallback), "cpu", "cuda", or "mps". Defaults to "auto".
"""
super(Nimbus, self).__init__()
self.fov_paths = fov_paths
self.include_channels = include_channels
self.segmentation_naming_convention = segmentation_naming_convention
self.dataset = dataset
self.output_dir = output_dir
self.half_resolution = half_resolution
self.save_predictions = save_predictions
self.batch_size = batch_size
self.checked_inputs = False
self.test_time_aug = test_time_aug
self.input_shape = input_shape
self.suffix = suffix
if self.output_dir != "":
os.makedirs(self.output_dir, exist_ok=True)

Expand All @@ -127,25 +118,9 @@ def __init__(

def check_inputs(self):
"""check inputs for Nimbus model"""
# check if all paths in fov_paths exists
if not isinstance(self.fov_paths, (list, tuple)):
self.fov_paths = [self.fov_paths]
io_utils.validate_paths(self.fov_paths)

# check if segmentation_naming_convention returns valid paths
path_to_segmentation = self.segmentation_naming_convention(self.fov_paths[0])
if not os.path.exists(path_to_segmentation):
raise FileNotFoundError(
"Function segmentation_naming_convention does not return valid\
path. Segmentation path {} does not exist.".format(
path_to_segmentation
)
)
# check if output_dir exists
io_utils.validate_paths([self.output_dir])

if isinstance(self.include_channels, str):
self.include_channels = [self.include_channels]
self.checked_inputs = True
print("All inputs are valid.")

Expand All @@ -161,14 +136,14 @@ def initialize_model(self, padding="reflect"):
self.checkpoint_path = os.path.join(
path,
"assets",
"resUnet_baseline_hickey_tonic_dec_mskc_mskp_2_channel_halfres_512_bs32.pt"
"resUnet_baseline_hickey_tonic_dec_mskc_mskp_2_channel_halfres_512_bs32_cw_0.8.pt"
)
if not os.path.exists(self.checkpoint_path):
local_dir = os.path.join(path, "assets")
print("Downloading weights from Hugging Face Hub...")
self.checkpoint_path = hf_hub_download(
repo_id="JLrumberger/Nimbus-Inference",
filename="resUnet_baseline_hickey_tonic_dec_mskc_mskp_2_channel_halfres_512_bs32.pt",
filename="resUnet_baseline_hickey_tonic_dec_mskc_mskp_2_channel_halfres_512_bs32_cw_0.8.pt",
local_dir=local_dir,
local_dir_use_symlinks=False,
)
Expand All @@ -192,13 +167,11 @@ def prepare_normalization_dict(
if os.path.exists(self.normalization_dict_path) and not overwrite:
self.normalization_dict = json.load(open(self.normalization_dict_path))
else:

n_jobs = os.cpu_count() if multiprocessing else 1
self.normalization_dict = prepare_normalization_dict(
self.fov_paths, self.output_dir, quantile, self.include_channels, n_subset, n_jobs
self.dataset, self.output_dir, quantile, n_subset,
n_jobs
)
if self.include_channels == []:
self.include_channels = list(self.normalization_dict.keys())

def predict_fovs(self):
"""Predicts cell classification for input data.
Expand All @@ -214,24 +187,12 @@ def predict_fovs(self):
print("Available GPUs: ", gpus)
print("Predictions will be saved in {}".format(self.output_dir))
print("Iterating through fovs will take a while...")
if self.suffix.lower() in [".ome.tif", ".ome.tiff"]:
self.cell_table = predict_ome_fovs(
nimbus=self, fov_paths=self.fov_paths, output_dir=self.output_dir,
normalization_dict=self.normalization_dict,
segmentation_naming_convention=self.segmentation_naming_convention,
include_channels=self.include_channels, save_predictions=self.save_predictions,
half_resolution=self.half_resolution, batch_size=self.batch_size,
test_time_augmentation=self.test_time_aug, suffix=self.suffix,
)
elif self.suffix.lower() in [".tiff", ".tif", ".jpg", ".jpeg", ".png"]:
self.cell_table = predict_fovs(
nimbus=self, fov_paths=self.fov_paths, output_dir=self.output_dir,
normalization_dict=self.normalization_dict,
segmentation_naming_convention=self.segmentation_naming_convention,
include_channels=self.include_channels, save_predictions=self.save_predictions,
half_resolution=self.half_resolution, batch_size=self.batch_size,
test_time_augmentation=self.test_time_aug, suffix=self.suffix,
)
self.cell_table = predict_fovs(
nimbus=self, dataset=self.dataset, output_dir=self.output_dir,
normalization_dict=self.normalization_dict, save_predictions=self.save_predictions,
half_resolution=self.half_resolution, batch_size=self.batch_size,
test_time_augmentation=self.test_time_aug, suffix=self.dataset.suffix,
)
self.cell_table.to_csv(os.path.join(self.output_dir, "nimbus_cell_table.csv"), index=False)
return self.cell_table

Expand Down
Loading
Loading