Skip to content

Commit

Permalink
Merge pull request BVLC#14 from BVLC/master
Browse files Browse the repository at this point in the history
update from updstream
  • Loading branch information
bittnt authored Jul 10, 2016
2 parents 830a65f + f28f5ae commit e059b7d
Show file tree
Hide file tree
Showing 16 changed files with 2,069 additions and 18 deletions.
3 changes: 3 additions & 0 deletions .travis.yml
Original file line number Diff line number Diff line change
Expand Up @@ -28,7 +28,10 @@ env:
- BUILD_NAME="cudnn-cmake" WITH_CMAKE=true WITH_CUDA=true WITH_CUDNN=true

cache:
timeout: 604800 # 1 week
apt: true
directories:
- ~/protobuf3

before_install:
- source ./scripts/travis/defaults.sh
Expand Down
154 changes: 154 additions & 0 deletions include/caffe/layers/lstm_layer.hpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,154 @@
#ifndef CAFFE_LSTM_LAYER_HPP_
#define CAFFE_LSTM_LAYER_HPP_

#include <string>
#include <utility>
#include <vector>

#include "caffe/blob.hpp"
#include "caffe/common.hpp"
#include "caffe/layer.hpp"
#include "caffe/layers/recurrent_layer.hpp"
#include "caffe/net.hpp"
#include "caffe/proto/caffe.pb.h"

namespace caffe {

template <typename Dtype> class RecurrentLayer;

/**
* @brief Processes sequential inputs using a "Long Short-Term Memory" (LSTM)
* [1] style recurrent neural network (RNN). Implemented by unrolling
* the LSTM computation through time.
*
* The specific architecture used in this implementation is as described in
* "Learning to Execute" [2], reproduced below:
* i_t := \sigmoid[ W_{hi} * h_{t-1} + W_{xi} * x_t + b_i ]
* f_t := \sigmoid[ W_{hf} * h_{t-1} + W_{xf} * x_t + b_f ]
* o_t := \sigmoid[ W_{ho} * h_{t-1} + W_{xo} * x_t + b_o ]
* g_t := \tanh[ W_{hg} * h_{t-1} + W_{xg} * x_t + b_g ]
* c_t := (f_t .* c_{t-1}) + (i_t .* g_t)
* h_t := o_t .* \tanh[c_t]
* In the implementation, the i, f, o, and g computations are performed as a
* single inner product.
*
* Notably, this implementation lacks the "diagonal" gates, as used in the
* LSTM architectures described by Alex Graves [3] and others.
*
* [1] Hochreiter, Sepp, and Schmidhuber, Jürgen. "Long short-term memory."
* Neural Computation 9, no. 8 (1997): 1735-1780.
*
* [2] Zaremba, Wojciech, and Sutskever, Ilya. "Learning to execute."
* arXiv preprint arXiv:1410.4615 (2014).
*
* [3] Graves, Alex. "Generating sequences with recurrent neural networks."
* arXiv preprint arXiv:1308.0850 (2013).
*/
template <typename Dtype>
class LSTMLayer : public RecurrentLayer<Dtype> {
public:
explicit LSTMLayer(const LayerParameter& param)
: RecurrentLayer<Dtype>(param) {}

virtual inline const char* type() const { return "LSTM"; }

protected:
virtual void FillUnrolledNet(NetParameter* net_param) const;
virtual void RecurrentInputBlobNames(vector<string>* names) const;
virtual void RecurrentOutputBlobNames(vector<string>* names) const;
virtual void RecurrentInputShapes(vector<BlobShape>* shapes) const;
virtual void OutputBlobNames(vector<string>* names) const;
};

/**
* @brief A helper for LSTMLayer: computes a single timestep of the
* non-linearity of the LSTM, producing the updated cell and hidden
* states.
*/
template <typename Dtype>
class LSTMUnitLayer : public Layer<Dtype> {
public:
explicit LSTMUnitLayer(const LayerParameter& param)
: Layer<Dtype>(param) {}
virtual void Reshape(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);

virtual inline const char* type() const { return "LSTMUnit"; }
virtual inline int ExactNumBottomBlobs() const { return 3; }
virtual inline int ExactNumTopBlobs() const { return 2; }

virtual inline bool AllowForceBackward(const int bottom_index) const {
// Can't propagate to sequence continuation indicators.
return bottom_index != 2;
}

protected:
/**
* @param bottom input Blob vector (length 3)
* -# @f$ (1 \times N \times D) @f$
* the previous timestep cell state @f$ c_{t-1} @f$
* -# @f$ (1 \times N \times 4D) @f$
* the "gate inputs" @f$ [i_t', f_t', o_t', g_t'] @f$
* -# @f$ (1 \times N) @f$
* the sequence continuation indicators @f$ \delta_t @f$
* @param top output Blob vector (length 2)
* -# @f$ (1 \times N \times D) @f$
* the updated cell state @f$ c_t @f$, computed as:
* i_t := \sigmoid[i_t']
* f_t := \sigmoid[f_t']
* o_t := \sigmoid[o_t']
* g_t := \tanh[g_t']
* c_t := cont_t * (f_t .* c_{t-1}) + (i_t .* g_t)
* -# @f$ (1 \times N \times D) @f$
* the updated hidden state @f$ h_t @f$, computed as:
* h_t := o_t .* \tanh[c_t]
*/
virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual void Forward_gpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);

/**
* @brief Computes the error gradient w.r.t. the LSTMUnit inputs.
*
* @param top output Blob vector (length 2), providing the error gradient with
* respect to the outputs
* -# @f$ (1 \times N \times D) @f$:
* containing error gradients @f$ \frac{\partial E}{\partial c_t} @f$
* with respect to the updated cell state @f$ c_t @f$
* -# @f$ (1 \times N \times D) @f$:
* containing error gradients @f$ \frac{\partial E}{\partial h_t} @f$
* with respect to the updated cell state @f$ h_t @f$
* @param propagate_down see Layer::Backward.
* @param bottom input Blob vector (length 3), into which the error gradients
* with respect to the LSTMUnit inputs @f$ c_{t-1} @f$ and the gate
* inputs are computed. Computatation of the error gradients w.r.t.
* the sequence indicators is not implemented.
* -# @f$ (1 \times N \times D) @f$
* the error gradient w.r.t. the previous timestep cell state
* @f$ c_{t-1} @f$
* -# @f$ (1 \times N \times 4D) @f$
* the error gradient w.r.t. the "gate inputs"
* @f$ [
* \frac{\partial E}{\partial i_t}
* \frac{\partial E}{\partial f_t}
* \frac{\partial E}{\partial o_t}
* \frac{\partial E}{\partial g_t}
* ] @f$
* -# @f$ (1 \times 1 \times N) @f$
* the gradient w.r.t. the sequence continuation indicators
* @f$ \delta_t @f$ is currently not computed.
*/
virtual void Backward_cpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);
virtual void Backward_gpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);

/// @brief The hidden and output dimension.
int hidden_dim_;
Blob<Dtype> X_acts_;
};

} // namespace caffe

#endif // CAFFE_LSTM_LAYER_HPP_
187 changes: 187 additions & 0 deletions include/caffe/layers/recurrent_layer.hpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,187 @@
#ifndef CAFFE_RECURRENT_LAYER_HPP_
#define CAFFE_RECURRENT_LAYER_HPP_

#include <string>
#include <utility>
#include <vector>

#include "caffe/blob.hpp"
#include "caffe/common.hpp"
#include "caffe/layer.hpp"
#include "caffe/net.hpp"
#include "caffe/proto/caffe.pb.h"
#include "caffe/util/format.hpp"

namespace caffe {

template <typename Dtype> class RecurrentLayer;

/**
* @brief An abstract class for implementing recurrent behavior inside of an
* unrolled network. This Layer type cannot be instantiated -- instead,
* you should use one of its implementations which defines the recurrent
* architecture, such as RNNLayer or LSTMLayer.
*/
template <typename Dtype>
class RecurrentLayer : public Layer<Dtype> {
public:
explicit RecurrentLayer(const LayerParameter& param)
: Layer<Dtype>(param) {}
virtual void LayerSetUp(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual void Reshape(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual void Reset();

virtual inline const char* type() const { return "Recurrent"; }
virtual inline int MinBottomBlobs() const {
int min_bottoms = 2;
if (this->layer_param_.recurrent_param().expose_hidden()) {
vector<string> inputs;
this->RecurrentInputBlobNames(&inputs);
min_bottoms += inputs.size();
}
return min_bottoms;
}
virtual inline int MaxBottomBlobs() const { return MinBottomBlobs() + 1; }
virtual inline int ExactNumTopBlobs() const {
int num_tops = 1;
if (this->layer_param_.recurrent_param().expose_hidden()) {
vector<string> outputs;
this->RecurrentOutputBlobNames(&outputs);
num_tops += outputs.size();
}
return num_tops;
}

virtual inline bool AllowForceBackward(const int bottom_index) const {
// Can't propagate to sequence continuation indicators.
return bottom_index != 1;
}

protected:
/**
* @brief Fills net_param with the recurrent network architecture. Subclasses
* should define this -- see RNNLayer and LSTMLayer for examples.
*/
virtual void FillUnrolledNet(NetParameter* net_param) const = 0;

/**
* @brief Fills names with the names of the 0th timestep recurrent input
* Blob&s. Subclasses should define this -- see RNNLayer and LSTMLayer
* for examples.
*/
virtual void RecurrentInputBlobNames(vector<string>* names) const = 0;

/**
* @brief Fills shapes with the shapes of the recurrent input Blob&s.
* Subclasses should define this -- see RNNLayer and LSTMLayer
* for examples.
*/
virtual void RecurrentInputShapes(vector<BlobShape>* shapes) const = 0;

/**
* @brief Fills names with the names of the Tth timestep recurrent output
* Blob&s. Subclasses should define this -- see RNNLayer and LSTMLayer
* for examples.
*/
virtual void RecurrentOutputBlobNames(vector<string>* names) const = 0;

/**
* @brief Fills names with the names of the output blobs, concatenated across
* all timesteps. Should return a name for each top Blob.
* Subclasses should define this -- see RNNLayer and LSTMLayer for
* examples.
*/
virtual void OutputBlobNames(vector<string>* names) const = 0;

/**
* @param bottom input Blob vector (length 2-3)
*
* -# @f$ (T \times N \times ...) @f$
* the time-varying input @f$ x @f$. After the first two axes, whose
* dimensions must correspond to the number of timesteps @f$ T @f$ and
* the number of independent streams @f$ N @f$, respectively, its
* dimensions may be arbitrary. Note that the ordering of dimensions --
* @f$ (T \times N \times ...) @f$, rather than
* @f$ (N \times T \times ...) @f$ -- means that the @f$ N @f$
* independent input streams must be "interleaved".
*
* -# @f$ (T \times N) @f$
* the sequence continuation indicators @f$ \delta @f$.
* These inputs should be binary (0 or 1) indicators, where
* @f$ \delta_{t,n} = 0 @f$ means that timestep @f$ t @f$ of stream
* @f$ n @f$ is the beginning of a new sequence, and hence the previous
* hidden state @f$ h_{t-1} @f$ is multiplied by @f$ \delta_t = 0 @f$
* and has no effect on the cell's output at timestep @f$ t @f$, and
* a value of @f$ \delta_{t,n} = 1 @f$ means that timestep @f$ t @f$ of
* stream @f$ n @f$ is a continuation from the previous timestep
* @f$ t-1 @f$, and the previous hidden state @f$ h_{t-1} @f$ affects the
* updated hidden state and output.
*
* -# @f$ (N \times ...) @f$ (optional)
* the static (non-time-varying) input @f$ x_{static} @f$.
* After the first axis, whose dimension must be the number of
* independent streams, its dimensions may be arbitrary.
* This is mathematically equivalent to using a time-varying input of
* @f$ x'_t = [x_t; x_{static}] @f$ -- i.e., tiling the static input
* across the @f$ T @f$ timesteps and concatenating with the time-varying
* input. Note that if this input is used, all timesteps in a single
* batch within a particular one of the @f$ N @f$ streams must share the
* same static input, even if the sequence continuation indicators
* suggest that difference sequences are ending and beginning within a
* single batch. This may require padding and/or truncation for uniform
* length.
*
* @param top output Blob vector (length 1)
* -# @f$ (T \times N \times D) @f$
* the time-varying output @f$ y @f$, where @f$ D @f$ is
* <code>recurrent_param.num_output()</code>.
* Refer to documentation for particular RecurrentLayer implementations
* (such as RNNLayer and LSTMLayer) for the definition of @f$ y @f$.
*/
virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual void Forward_gpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual void Backward_cpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);

/// @brief A Net to implement the Recurrent functionality.
shared_ptr<Net<Dtype> > unrolled_net_;

/// @brief The number of independent streams to process simultaneously.
int N_;

/**
* @brief The number of timesteps in the layer's input, and the number of
* timesteps over which to backpropagate through time.
*/
int T_;

/// @brief Whether the layer has a "static" input copied across all timesteps.
bool static_input_;

/**
* @brief The last layer to run in the network. (Any later layers are losses
* added to force the recurrent net to do backprop.)
*/
int last_layer_index_;

/**
* @brief Whether the layer's hidden state at the first and last timesteps
* are layer inputs and outputs, respectively.
*/
bool expose_hidden_;

vector<Blob<Dtype>* > recur_input_blobs_;
vector<Blob<Dtype>* > recur_output_blobs_;
vector<Blob<Dtype>* > output_blobs_;
Blob<Dtype>* x_input_blob_;
Blob<Dtype>* x_static_input_blob_;
Blob<Dtype>* cont_input_blob_;
};

} // namespace caffe

#endif // CAFFE_RECURRENT_LAYER_HPP_
Loading

0 comments on commit e059b7d

Please sign in to comment.