Simple and configurable timing decorator with little overhead that can be attached to python functions to measure their execution time. Can easily display parameter types and lengths if available and is compatible with NumPy ndarrays, Pandas DataFrames and PyTorch tensors.
pip install --upgrade timed-decorator
Attach it to the function you want to time and run the application.
from timed_decorator.simple_timed import timed
@timed()
def fibonacci(n: int) -> int:
assert n > 0
a, b = 0, 1
for _ in range(n):
a, b = b, a + b
return a
fibonacci(10000)
# fibonacci() -> total time: 1114100ns
For more advanced usage, consider registering a timed decorator and using it afterward through your codebase. See Registering a timed decorator.
-
timed
collect_gc
(bool
): IfTrue
, runs a full garbage collection before timing the wrapped function. Default:True
.disable_gc
(bool
): IfTrue
, disabled garbage collection during function execution. Default:False
.use_seconds
(bool
): IfTrue
, displays the elapsed time in seconds. Default:False
.precision
(int
): Used in conjunction withuse_seconds
, represents the decimal points used for printing seconds. Default:9
.show_args
(bool
): IfTrue
, displays the function arguments according todisplay_level
. Useful when timing function calls with arguments of different magnitude. Default:False
.show_kwargs
(bool
): IfTrue
, displays the keyword arguments according todisplay_level
. Default:False
.display_level
(int
): The level of verbosity used when printing function arguments ad keyword arguments. If0
, prints the type of the parameters. If1
, prints values for all primitive types, shapes for arrays, tensors, dataframes and length for sequences. Otherwise, prints values for all parameters. Default:1
.sep
(str
): The separator used when printing function arguments and keyword arguments. Default:', '
.stdout
(bool
): IfTrue
, writes the elapsed time to stdout. Default:True
.file_path
(str
): If notNone
, writes the measurement at the end of the given file path. For thread safe file writing configure uselogger_name
instead. Default:None
.logger_name
(str
): If notNone
, uses the given logger to print the measurement. Can't be used in conjunction withfile_path
. Default:None
. See Using a logger.return_time
(bool
): IfTrue
, returns the elapsed time in addition to the wrapped function's return value. Default:False
.out
(dict
): If notNone
, stores the elapsed time in nanoseconds in the given dict using the fully qualified function name as key, in the following format: (function call counts, total elapsed time, total "own time"). If the key already exists, updates the existing value. The elapsed time is equal to "own time" for the simple timed decorator. For the nested time decorator, the elapsed time is different from "own time" only when another function decorated with a nested timer is called during the execution of the current function. Default:None
. See Storing the elapsed time in a dict.use_qualname
(bool
): IfTrue
, IfTrue
, uses the qualified name of the function when logging the elapsed time. Default:False
.
-
nested_timed
is similar totimed
, however it is designed to work nicely with multiple timed functions that call each other, displaying both the total execution time and the difference after subtracting other timed functions on the same call stack. See Nested timing decorator. -
create_timed_decorator
registers a timed decorator with a given name. Can be enabled or disabled during creation.name
(str
): The name of the timed decorator which will be instantiated using the provided arguments. Use this name for retrieving the timed decorator withtimed_decorator.builder.get_timed_decorator
.nested
(bool
): IfTrue
, uses thetimed_decorator.nested_timed.nested_timed
as decorator, otherwise usestimed_decorator.simple_timed.timed
. Default:False
.enabled
(bool
): IfTrue
, the timed decorator is enabled and used for timing decorated functions. Otherwise, functions decorated withname
will not be timed. Default:True
.- Also receives all the other arguments accepted by
timed
andnested_timed
.
-
get_timed_decorator
wraps the decorated function and lazily measures its elapsed time using the registered timed decorator. The timer can be registered after the function definition, but must be registered before the first function call. If the timer is disabled, the elapsed time will not be measured.name
(str
): The name of the timed decorator registered usingtimed_decorator.builder.create_timed_decorator
.
Simple usage.
from timed_decorator.simple_timed import timed
@timed()
def fibonacci(n: int) -> int:
assert n > 0
a, b = 0, 1
for _ in range(n):
a, b = b, a + b
return a
fibonacci(10000)
# fibonacci() -> total time: 1114100ns
Getting both the function's return value and the elapsed time.
from timed_decorator.simple_timed import timed
@timed(return_time=True)
def fibonacci(n: int) -> int:
assert n > 0
a, b = 0, 1
for _ in range(n):
a, b = b, a + b
return a
value, elapsed = fibonacci(10000)
print(f'10000th fibonacci number has {len(str(value))} digits. Calculating it took {elapsed}ns.')
# fibonacci() -> total time: 1001200ns
# 10000th fibonacci number has 2090 digits. Calculating it took 1001200ns.
Set collect_gc=False
to disable pre-collection of garbage.
from timed_decorator.simple_timed import timed
@timed(collect_gc=False)
def fibonacci(n: int) -> int:
assert n > 0
a, b = 0, 1
for _ in range(n):
a, b = b, a + b
return a
fibonacci(10000)
# fibonacci() -> total time: 1062400ns
Using seconds instead of nanoseconds.
from timed_decorator.simple_timed import timed
@timed(disable_gc=True, use_seconds=True, precision=3)
def call_recursive_fibonacci(n: int) -> int:
return recursive_fibonacci(n)
def recursive_fibonacci(n: int) -> int:
assert n > 0
if n > 3:
return recursive_fibonacci(n - 1) + recursive_fibonacci(n - 2)
if n == 1:
return 0
return 1
call_recursive_fibonacci(30)
# call_recursive_fibonacci() -> total time: 0.045s
Displaying function parameters:
from timed_decorator.simple_timed import timed
import numpy as np
@timed(show_args=True, display_level=0)
def numpy_operation(array_list, single_array, inplace=False, aggregate='mean', weights=None):
x = np.array(array_list)
if weights is not None:
x = (x.T * weights).T
if aggregate == 'mean':
x = x.mean(axis=0)
else:
x = x.sum(axis=0)
if inplace:
single_array += x
return single_array
else:
other_array = single_array + x
return other_array
numpy_operation(
[np.random.rand(2, 3) for _ in range(10)],
np.random.rand(2, 3),
weights=[i / 10 for i in range(10)],
inplace=True
)
# numpy_operation(list, ndarray) -> total time: 204200ns
Using the default display level (1).
from timed_decorator.simple_timed import timed
import numpy as np
@timed(show_args=True)
def numpy_operation(array_list, single_array, inplace=False, aggregate='mean', weights=None):
x = np.array(array_list)
if weights is not None:
x = (x.T * weights).T
if aggregate == 'mean':
x = x.mean(axis=0)
else:
x = x.sum(axis=0)
if inplace:
single_array += x
return single_array
else:
other_array = single_array + x
return other_array
numpy_operation(
[np.random.rand(2, 3) for _ in range(10)],
np.random.rand(2, 3),
weights=[i / 10 for i in range(10)],
inplace=True,
aggregate='sum'
)
# numpy_operation(list(ndarray)[10], ndarray(2, 3)) -> total time: 166400ns
Showing the keyword arguments.
from timed_decorator.simple_timed import timed
import numpy as np
@timed(show_args=True, show_kwargs=True)
def numpy_operation(array_list, single_array, inplace=False, aggregate='mean', weights=None):
x = np.array(array_list)
if weights is not None:
x = (x.T * weights).T
if aggregate == 'mean':
x = x.mean(axis=0)
else:
x = x.sum(axis=0)
if inplace:
single_array += x
return single_array
else:
other_array = single_array + x
return other_array
numpy_operation(
[np.random.rand(2, 3) for _ in range(10)],
np.random.rand(2, 3),
weights=[i / 10 for i in range(10)],
inplace=True,
aggregate='sum'
)
# numpy_operation(list(ndarray)[10], ndarray(2, 3), ('weights', 'list(float)[10]'), ('inplace', 'True'), ('aggregate', 'sum')) -> total time: 166400ns
Not recommended: using display level 2 shows unformatted function arguments.
from timed_decorator.simple_timed import timed
import numpy as np
@timed(show_args=True, show_kwargs=True, display_level=2)
def numpy_operation(array_list, single_array, inplace=False, aggregate='mean', weights=None):
x = np.array(array_list)
if weights is not None:
x = (x.T * weights).T
if aggregate == 'mean':
x = x.mean(axis=0)
else:
x = x.sum(axis=0)
if inplace:
single_array += x
return single_array
else:
other_array = single_array + x
return other_array
numpy_operation(
[np.random.rand(1, 3) for _ in range(1)],
np.random.rand(1, 3),
weights=[i / 10 for i in range(1)],
inplace=True
)
# numpy_operation([array([[0.74500602, 0.70666224, 0.83888559]])], [[0.74579988 0.51878032 0.06419635]], ('weights', '[0.0]'), ('inplace', 'True')) -> total time: 185300ns
Using the fully qualified name for timing.
from time import sleep
from timed_decorator.simple_timed import timed
class ClassA:
@timed(use_qualname=True)
def wait(self, x):
sleep(x)
ClassA().wait(0.1)
# ClassA.wait() -> total time: 100943000ns
from time import sleep
from timed_decorator.nested_timed import nested_timed
@nested_timed()
def nested_fn():
@nested_timed()
def sleeping_fn(x):
sleep(x)
@nested_timed()
def other_fn():
sleep(0.5)
sleeping_fn(0.5)
sleep(1)
sleeping_fn(1)
other_fn()
sleeping_fn(1)
nested_fn()
Prints
sleeping_fn() -> total time: 1000592700ns, own time: 1000592700ns
sleeping_fn() -> total time: 500687200ns, own time: 500687200ns
other_fn() -> total time: 1036725800ns, own time: 536038600ns
sleeping_fn() -> total time: 1000705600ns, own time: 1000705600ns
nested_fn() -> total time: 4152634300ns, own time: 1114610200ns
import logging
from time import sleep
from timed_decorator.simple_timed import timed
logging.basicConfig()
logging.root.setLevel(logging.NOTSET)
@timed(logger_name='TEST_LOGGER', stdout=False)
def fn():
sleep(1)
fn()
fn()
Prints
INFO:TEST_LOGGER:fn() -> total time: 1000368900ns
INFO:TEST_LOGGER:fn() -> total time: 1001000200ns
Capture a logger's input
import logging
from io import StringIO
from time import sleep
from timed_decorator.simple_timed import timed
log_stream = StringIO()
log_handler = logging.StreamHandler(log_stream)
logging.root.setLevel(logging.NOTSET)
logging.getLogger('TEST_LOGGER').addHandler(log_handler)
@timed(logger_name='TEST_LOGGER', stdout=False)
def fn():
sleep(1)
fn()
fn()
print(log_stream.getvalue().split('\n')[:-1])
Prints
['fn() -> total time: 1000214700ns', 'fn() -> total time: 1000157800ns']
from time import sleep
from timed_decorator.simple_timed import timed
ns = {}
@timed(out=ns, stdout=False)
def fn():
sleep(1)
fn()
print(ns)
fn()
print(ns)
Prints
{'fn': [1, 1000672000, 1000672000]}
{'fn': [2, 2001306900, 2001306900]}
Synchronizes cuda device when cuda tensors are passed as function parameters.
import torch
from torch import Tensor
from timed_decorator.simple_timed import timed
@timed(show_args=True)
def batched_euclidean_distance(x: Tensor, y: Tensor) -> Tensor:
diff = x @ y.T
x_squared = (x ** 2).sum(dim=1)
y_squared = (b ** 2).sum(dim=1)
return x_squared.unsqueeze(-1) + y_squared.unsqueeze(0) - 2 * diff
a = torch.rand((10000, 800))
b = torch.rand((12000, 800))
batched_euclidean_distance(a, b)
if torch.cuda.is_available():
a = a.cuda()
b = b.cuda()
batched_euclidean_distance(a, b) # Cuda device is synchronized if function arguments are on device.
Prints:
batched_euclidean_distance(CpuTensor[10000, 800], CpuTensor[12000, 800]) -> total time: 685659400ns
batched_euclidean_distance(CudaTensor[10000, 800], CudaTensor[12000, 800]) -> total time: 260411900ns
from time import sleep
from timed_decorator.builder import create_timed_decorator, get_timed_decorator
@get_timed_decorator("MyCustomTimer")
def main():
@get_timed_decorator("MyCustomTimer")
def function_1():
sleep(0.1)
@get_timed_decorator("MyCustomTimer")
def nested_function():
@get_timed_decorator("MyCustomTimer")
def function_2():
sleep(0.2)
@get_timed_decorator("MyCustomTimer")
def function_3():
sleep(0.3)
function_2()
function_2()
function_3()
nested_function()
function_1()
nested_function()
function_1()
if __name__ == '__main__':
my_measurements = {}
create_timed_decorator("MyCustomTimer",
nested=False, # This is true by default
collect_gc=False, # I don't want to explicitly collect garbage
disable_gc=True, # I don't want to wait for garbage collection during measuring
stdout=False, # I don't wat to print stuff to console
out=my_measurements # My measurements dict
)
main()
for key, (counts, elapsed, own_time) in my_measurements.items():
print(f'Function {key} was called {counts} time(s) and took {elapsed / 1e+9}s')
print()
# Now I can do stuff with my measurements.
functions = sorted(my_measurements.keys(), reverse=True)
for i in range(len(functions)):
fn_1 = functions[i]
print(f'Function {fn_1}:')
for j in range(i + 1, len(functions)):
fn_2 = functions[j]
if fn_1.startswith(fn_2):
_, elapsed_1, _ = my_measurements[fn_1]
_, elapsed_2, _ = my_measurements[fn_2]
ratio = elapsed_1 / elapsed_2 * 100
print(f'* took {ratio:.2f}% from {fn_2}')
print()
Prints:
Function main.<locals>.nested_function.<locals>.function_2 was called 4 time(s) and took 0.8019482s
Function main.<locals>.nested_function.<locals>.function_3 was called 2 time(s) and took 0.6010157s
Function main.<locals>.nested_function was called 2 time(s) and took 1.403365s
Function main.<locals>.function_1 was called 2 time(s) and took 0.2007625s
Function main was called 1 time(s) and took 1.6043592s
Function main.<locals>.nested_function.<locals>.function_3:
* took 42.83% from main.<locals>.nested_function
* took 37.46% from main
Function main.<locals>.nested_function.<locals>.function_2:
* took 57.14% from main.<locals>.nested_function
* took 49.99% from main
Function main.<locals>.nested_function:
* took 87.47% from main
Function main.<locals>.function_1:
* took 12.51% from main
Function main: