Skip to content

Latest commit

 

History

History
151 lines (91 loc) · 3.84 KB

README.md

File metadata and controls

151 lines (91 loc) · 3.84 KB

StreamDiffusion Examples

English | 日本語

Examples of StreamDiffusion.

If you want to maximize performance, you need to install with following steps explained in README.md in the root directory, and use --acceleration tensorrt option at the end of each command. At default, StreamDiffusion uses xformers for acceleration, which is not the fastest option.

※※ For other commands, please refer to Command Line Options at the bottom.

screen/

Take a screen capture and process it.

When you run the script, a translucent window appears. Position it at where you want to capture the screen and press the enter key to finalize the capture area.

You need to install extra dependencies for this script as follows:

pip install -r screen/requirements.txt

Usage

python screen/main.py

benchmark/

Just measure the performance of StreamDiffusion.

benchmark/multi.py spawns multiple processes for postprocessing and benchmark/single.py does not.

Usage

python benchmark/multi.py

With TensorRT acceleration:

python benchmark/multi.py --acceleration tensorrt

examples からサンプルを実行できます。

optimal-performance/

Using SD-Turbo and TensorRT, perform text-to-image with optimal performance.

optimal-performance/multi.py is optimized for RTX4090 and performs batch processing, while optimal-performance/single.py does not.

Usage

python optimal-performance/multi.py
python optimal-performance/single.py

img2img/

Perform image-to-image.

img2img/multi.py takes a directory of input images and outputs to another directory as arguments, and img2img/single.py takes a single image.

Usage

Image-to-image for a single image:

python img2img/single.py --input path/to/input.png --output path/to/output.png

Image-to-image for multiple images:

python img2img/multi.py --input ./input --output-dir ./output

txt2img/

Perform text-to-image.

txt2img/multi.py generates multiple images from a single prompt, and txt2img/single.py generates a single image.

Usage

Text-to-image for a single image:

python txt2img/single.py --output output.png --prompt "A cat with a hat"

Text-to-image for multiple images:

python txt2img/multi.py --output ./output --prompt "A cat with a hat"

vid2vid/

Perform video-to-video conversion.

You need to install extra dependencies for this script as follows:

pip install -r vid2vid/requirements.txt

Usage

python vid2vid/main.py --input path/to/input.mp4 --output path/to/output.mp4

Command Line Options

model_id_or_path

--model_id_or_path allows you to change models.
By specifying the model ID in Hugging Face (like "KBlueLeaf/kohaku-v2.1" ), the model can be loaded from Hugging Face at runtime.
It is also possible to use models in a local directorys by specifying the local model path.

Usage (Hugging Face) : --model_id_or_path "KBlueLeaf/kohaku-v2.1"
Usage (Local) : --model_id_or_path "C:/stable-diffusion-webui/models/Stable-diffusion/ModelName.safetensor"

lora_dict

--lora_dict can specify multiple LoRAs to be used.
The --lora_dict is in the format "{'LoRA_1 file path' : LoRA_1 scale , 'LoRA_2 file path' : LoRA_2 scale}".

Usage : --lora_dict "{'C:/stable-diffusion-webui/models/Stable-diffusion/LoRA_1.safetensor' : 0.5 ,"E:/ComfyUI/models/LoRA_2.safetensor' : 0.7 }"

Prompt

--prompt allows you to change Prompt.

Usage : --prompt "A cat with a hat"

Negative Prompt

--negative_prompt allows you to change Negative Prompt.
※※ --negative_prompt Not available in txt2img ,optimal-performance, and vid2vid.

Usage : --negative_prompt "Bad quality"