forked from jikexueyuanwiki/tensorflow-zh
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
添加翻译+原文地址修改
- Loading branch information
Showing
1 changed file
with
37 additions
and
52 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,67 +1,52 @@ | ||
# Tensor Ranks, Shapes, and Types <a class="md-anchor" id="AUTOGENERATED-tensor-ranks--shapes--and-types"></a> | ||
# 张量的阶,形式,类型<a class="md-anchor" id="AUTOGENERATED-tensor-ranks--shapes--and-types"></a> | ||
TensorFlow程序是用张量数据结构来表示所有的数据.你可以把一个TensorFlow张量想成是一个n维的数组或列表.一个张量有一个静态类型和动态类型的维数.只有张量可以在计算图中连通于节点之间. | ||
|
||
TensorFlow programs use a tensor data structure to represent all data. You can | ||
think of a TensorFlow tensor as an n-dimensional array or list. | ||
A tensor has a static type and dynamic dimensions. Only tensors may be passed | ||
between nodes in the computation graph. | ||
|
||
## Rank <a class="md-anchor" id="AUTOGENERATED-rank"></a> | ||
## 阶 <a class="md-anchor" id="AUTOGENERATED-rank"></a> | ||
在TensorFlow系统中,张量通过单位维数来被描述为*阶*.但是张量阶并不和矩阵中的阶是同一个概念.张量阶(有时是关于如*顺序*或*度数*或者是*n维*)是张量维数的一个数量.比如,下面的张量(使用Python中list定义的)就是2阶. | ||
|
||
In the TensorFlow system, tensors are described by a unit of dimensionality | ||
known as *rank*. Tensor rank is not the same as matrix rank. Tensor rank | ||
(sometimes referred to as *order* or *degree* or *n-dimension*) is the number | ||
of dimensions of the tensor. For example, the following tensor (defined as a | ||
Python list) has a rank of 2: | ||
|
||
t = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] | ||
一个二阶张量就可以认为是我们平常所说的矩阵,一阶张量可以认为是一个向量.对于一个二阶张量你可以用语句`t[i, j]`来访问其中的任何元素.而对于三阶张量你可以用't[i, j, k]'. | ||
|
||
A rank two tensor is what we typically think of as a matrix, a rank one tensor | ||
is a vector. For a rank two tensor you can acccess any element with the syntax | ||
`t[i, j]`. For a rank three tensor you would need to address an element with | ||
't[i, j, k]'. | ||
|
||
Rank | Math entity | Python example | ||
阶 |数学实例| Python 例子 | ||
--- | --- | --- | ||
0 | Scalar (magnitude only) | `s = 483` | ||
1 | Vector (magnitude and direction) | `v = [1.1, 2.2, 3.3]` | ||
2 | Matrix (table of numbers) | `m = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]` | ||
3 | 3-Tensor (cube of numbers) | `t = [[[2], [4], [6]], [[8], [10], [12]], [[14], [16], [18]]]` | ||
n | n-Tensor (you get the idea) | `....` | ||
0 | 纯量 (只有大小) | `s = 483` | ||
1 | 向量(大小和方向) | `v = [1.1, 2.2, 3.3]` | ||
2 | 矩阵(数据表) | `m = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]` | ||
3 | 3阶张量 (数据立体) | `t = [[[2], [4], [6]], [[8], [10], [12]], [[14], [16], [18]]]` | ||
n | n阶 (自己想想看) | `....` | ||
|
||
## Shape <a class="md-anchor" id="AUTOGENERATED-shape"></a> | ||
## 形式 <a class="md-anchor" id="AUTOGENERATED-shape"></a> | ||
TensorFlow文档中使用了三种记号来方便地描述张量的维度:阶,形式以及维数.下表展示了他们之间的关系: | ||
|
||
The TensorFlow documentation uses three notational conventions to describe | ||
tensor dimensionality: rank, shape, and dimension number. The following table | ||
shows how these relate to one another: | ||
|
||
Rank | Shape | Dimension number | Example | ||
阶 | 形式 | 维数 | 实例 | ||
--- | --- | --- | --- | ||
0 | [] | 0-D | A 0-D tensor. A scalar. | ||
1 | [D0] | 1-D | A 1-D tensor with shape [5]. | ||
2 | [D0, D1] | 2-D | A 2-D tensor with shape [3, 4]. | ||
3 | [D0, D1, D2] | 3-D | A 3-D tensor with shape [1, 4, 3]. | ||
n | [D0, D1, ... Dn] | n-D | A tensor with shape [D0, D1, ... Dn]. | ||
|
||
Shapes can be represented via Python lists / tuples of ints, or with the | ||
[`TensorShape` class](../api_docs/python/framework.md#TensorShape). | ||
0 | [] | 0-D | 一个 0维张量. 一个纯量. | ||
1 | [D0] | 1-D | 一个1维张量的形式[5]. | ||
2 | [D0, D1] | 2-D |一个2维张量的形式[3, 4]. | ||
3 | [D0, D1, D2] | 3-D | 一个3维张量的形式 [1, 4, 3]. | ||
n | [D0, D1, ... Dn] | n-D | 一个n维张量的形式 [D0, D1, ... Dn]. | ||
形式可以通过Python中的int list或tuples来表示,也或者用[`TensorShape` class](../api_docs/python/framework.md#TensorShape). | ||
|
||
## Data types <a class="md-anchor" id="AUTOGENERATED-data-types"></a> | ||
## 数据类型<a class="md-anchor" id="AUTOGENERATED-data-types"></a> | ||
除了维度,Tensors有一个数据类型.你可以为一个张量指定一个下面数据类型中的任意一个类型: | ||
|
||
In addition to dimensionality, Tensors have a data type. You can assign any one | ||
of the following data types to a tensor: | ||
|
||
Data type | Python type | Description | ||
数据类型 | Python 类型| 描述 | ||
--- | --- | --- | ||
`DT_FLOAT` | `tf.float32` | 32 bits floating point. | ||
`DT_DOUBLE` | `tf.float64` | 64 bits floating point. | ||
`DT_INT64` | `tf.int64` | 64 bits signed integer. | ||
`DT_INT32` | `tf.int32` | 32 bits signed integer. | ||
`DT_INT16` | `tf.int16` | 16 bits signed integer. | ||
`DT_INT8` | `tf.int8` | 8 bits signed integer. | ||
`DT_UINT8` | `tf.uint8` | 8 bits unsigned integer. | ||
`DT_STRING` | `tf.string` | Variable length byte arrays. Each element of a Tensor is a byte array. | ||
`DT_BOOL` | `tf.bool` | Boolean. | ||
`DT_COMPLEX64` | `tf.complex64` | Complex number made of two 32 bits floating points: real and imaginary parts. | ||
`DT_QINT32` | `tf.qint32` | 32 bits signed integer used in quantized Ops. | ||
`DT_QINT8` | `tf.qint8` | 8 bits signed integer used in quantized Ops. | ||
`DT_QUINT8` | `tf.quint8` | 8 bits unsigned integer used in quantized Ops. | ||
`DT_FLOAT` | `tf.float32` | 32 位浮点数. | ||
`DT_DOUBLE` | `tf.float64` | 64 位浮点数. | ||
`DT_INT64` | `tf.int64` | 64 位有符号整型r. | ||
`DT_INT32` | `tf.int32` | 32 位有符号整型. | ||
`DT_INT16` | `tf.int16` | 16 位有符号整型. | ||
`DT_INT8` | `tf.int8` | 8位有符号整型. | ||
`DT_UINT8` | `tf.uint8` | 8位无符号整型. | ||
`DT_STRING` | `tf.string` | 可变长度的字节数组.每一个张量元素都是一个字节数组. | ||
`DT_BOOL` | `tf.bool` |布尔型. | ||
`DT_COMPLEX64` | `tf.complex64` | 由两个32位浮点数组成的复数:实数和虚数. | ||
`DT_QINT32` | `tf.qint32` | 用于量化Ops的32位有符号整型. | ||
`DT_QINT8` | `tf.qint8` | 用于量化Ops的8位有符号整型. | ||
`DT_QUINT8` | `tf.quint8` |用于量化Ops的8位无符号整型. | ||
原文:[Tensor Ranks, Shapes, and Types](http://www.tensorflow.org/resources/dims_types.md) 翻译:[nb312](https://github.com/nb312) |