Skip to content

alisonreboud/Cognimuse_replication

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Cognimuse_replication

This paper intends to replicate

Exploring CNN-based architectures for Multimodal Salient Event Detection in Videos Petros Koutras, Athanasia Zlatinsi and Petros Maragos School of E.C.E., National Technical University of Athens, 15773 Athens, Greece

Using the C3D implementation available at https://gist.github.com/albertomontesg/d8b21a179c1e6cca0480ebdf292c34d2

Data made available byt the Cognimuse team upon request.

  1. Video processing

video_processing.py -t 'CRA'

-t indicates the test video, should be one chosen among videos=['GLA','CRA','.DEP','LOR','BMI','CHI']

Paths to videos and labels hard coded in file.

Saves training set under data/train_set/

Saves testing set under data/test_set/

  1. Running the model

c3d.py

runs c3d model and returns auc, saving history and predictions to 'history_000.pkl', 'predictions.pkl' respectively

Hard coded parameters in this file (following the instructions from the paper)

epochs_drop = 7 initial_lrate = 0.001 drop = 0.1 epochs=15

params = {'dim': (16,224,224), 'batch_size': 30, 'n_classes': 2, 'n_channels': 3, 'shuffle': True} params_test = {'dim': (16,224,224), 'batch_size': 2, 'n_classes': 2, 'n_channels': 3, 'shuffle': False}

Earlystop also available (needs to be commented out)

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages