Skip to content

alichr/Test-time-Open-World-Recognition-on-3D-Point-Cloud-Data-

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

# PointNet with CLIP Features for Multi-View Object Classification

This repository contains code for training a multi-view object classification model using PointNet with CLIP (Contrastive Language-Image Pretraining) features. The model combines 2D and 3D features to perform classification on 3D point cloud data.

## Prerequisites

- Python 3.6 or later
- PyTorch 1.7 or later
- CUDA-capable GPU (optional but recommended for faster training)
- Other dependencies listed in `requirements.txt`

## Installation

1. Clone this repository:

   ```sh
   git clone https://github.com/yourusername/pointnet-clip-object-classification.git
   cd pointnet-clip-object-classification
  1. Install the required packages using pip:

    pip install -r requirements.txt

Usage

  1. Train the PointNet-CLIP model:

    python main.py --batch_size 32 --num_points 1024 --nepoch 250 --outf results

    Adjust the batch size, number of points, number of epochs, and output folder as needed.

  2. Evaluate the trained model:

    python main.py --batch_size 32 --num_points 1024 --model results/3D_model_X.pth --outf results --feature_transform

    Replace X with the epoch number of the trained model.

  3. View results:

    Training and testing progress, as well as accuracy, will be displayed during training and saved to a log.txt file in the output folder.

Acknowledgments

  • This code builds upon the PointNet architecture and CLIP model.
  • Realistic_Projection module is used for projecting point clouds to 2D images.
  • The dataset is assumed to be organized in the specified structure under dataset_path.

Citation

If you use this code in your research, please consider citing:

@article{YourArticleCitation,
  title={Title of Your Article},
  author={Author Names},
  journal={Journal Name},
  year={Year},
  volume={Volume},
  number={Number},
  pages={Page Range},
  doi={DOI},
}

License

This project is licensed under the MIT License - see the LICENSE file for details.


Please replace `yourusername` in the repository URL with your actual GitHub username and adjust any paths or details according to your use case.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages