Skip to content

Commit

Permalink
[Relay][Frontend][Keras] NHWC import support. (apache#4899)
Browse files Browse the repository at this point in the history
* Basic test working

* Almost all tests working.

* all tests passing.

* Fixed lint.

* Improved Style.
  • Loading branch information
jwfromm authored and alexwong committed Feb 26, 2020
1 parent b3c99aa commit 9af2202
Show file tree
Hide file tree
Showing 2 changed files with 143 additions and 52 deletions.
148 changes: 112 additions & 36 deletions python/tvm/relay/frontend/keras.py
Original file line number Diff line number Diff line change
Expand Up @@ -186,7 +186,7 @@ def _convert_merge(inexpr, keras_layer, _):
assert len(inexpr) == 2, "Subtract merge takes 2 inputs."
ret = _op.subtract(ret, inexpr[1])
elif merge_type in ['Add', 'Multiply', 'Maximum']:
op_map = {'Add':_op.add, 'Multiply':_op.multiply, 'Maximum':_op.maximum}
op_map = {'Add': _op.add, 'Multiply': _op.multiply, 'Maximum': _op.maximum}
for i in range(1, len(inexpr)):
ret = op_map[merge_type](ret, inexpr[i])
elif merge_type == 'Average':
Expand All @@ -206,7 +206,7 @@ def _convert_permute(inexpr, keras_layer, _):
def _convert_dense(inexpr, keras_layer, etab):
weightList = keras_layer.get_weights()
weight = etab.new_const(weightList[0].transpose([1, 0]))
params = {'weight':weight, 'units':weightList[0].shape[1]}
params = {'weight': weight, 'units': weightList[0].shape[1]}
input_shape = keras_layer.input_shape
input_dim = len(input_shape)
# In case of RNN dense, input shape will be (1, 1, n)
Expand Down Expand Up @@ -237,15 +237,28 @@ def _convert_convolution(inexpr, keras_layer, etab):
is_deconv = type(keras_layer).__name__ == 'Conv2DTranspose'
is_depthconv = type(keras_layer).__name__ == 'DepthwiseConv2D'
weightList = keras_layer.get_weights()
weight = weightList[0]
if etab.data_layout == 'NHWC':
if is_depthconv:
kernel_layout = 'HWOI'
else:
kernel_layout = 'HWIO'
else:
kernel_layout = 'OIHW'

if is_deconv:
kernel_h, kernel_w, n_filters, in_channels = weightList[0].shape
weight = weightList[0].transpose([3, 2, 0, 1])
kernel_h, kernel_w, n_filters, in_channels = weight.shape
if kernel_layout == 'OIHW':
weight = weight.transpose([3, 2, 0, 1])
elif is_depthconv:
kernel_h, kernel_w, in_channels, depth_mult = weightList[0].shape
weight = weightList[0].transpose([2, 3, 0, 1])
kernel_h, kernel_w, in_channels, depth_mult = weight.shape
if kernel_layout == 'OIHW':
weight = weight.transpose([2, 3, 0, 1])
elif etab.data_layout == 'NCHW':
kernel_h, kernel_w, in_channels, n_filters = weight.shape
weight = weight.transpose([3, 2, 0, 1])
else:
kernel_h, kernel_w, in_channels, n_filters = weightList[0].shape
weight = weightList[0].transpose([3, 2, 0, 1])
kernel_h, kernel_w, in_channels, n_filters = weight.shape
if isinstance(keras_layer.dilation_rate, (list, tuple)):
dilation = [keras_layer.dilation_rate[0], keras_layer.dilation_rate[1]]
else:
Expand All @@ -257,7 +270,9 @@ def _convert_convolution(inexpr, keras_layer, etab):
'kernel_size': [kernel_h, kernel_w],
'strides': [stride_h, stride_w],
'dilation': dilation,
'padding': [0, 0]}
'padding': [0, 0],
'data_layout': etab.data_layout,
'kernel_layout': kernel_layout}
if is_depthconv:
params['channels'] = in_channels * depth_mult
params['groups'] = in_channels
Expand All @@ -273,9 +288,13 @@ def _convert_convolution(inexpr, keras_layer, etab):
pad_l, pad_r = _get_pad_pair(in_w, dilated_kernel_w, stride_w)
if pad_t == pad_b and pad_l == pad_r:
params['padding'] = (pad_t, pad_l)
else:
elif etab.data_layout == 'NCHW':
inexpr = _op.nn.pad(data=inexpr, pad_width=(
(0, 0), (0, 0), (pad_t, pad_b), (pad_l, pad_r)))
else:
inexpr = _op.nn.pad(data=inexpr, pad_width=(
(0, 0), (pad_t, pad_b), (pad_l, pad_r), (0, 0)))

else:
msg = 'Padding with {} is not supported for operator Convolution ' \
'in frontend Keras.'
Expand All @@ -284,9 +303,13 @@ def _convert_convolution(inexpr, keras_layer, etab):
out = _op.nn.conv2d_transpose(data=inexpr, **params)
else:
out = _op.nn.conv2d(data=inexpr, **params)

if keras_layer.use_bias:
bias = etab.new_const(weightList[1])
out = _op.nn.bias_add(out, bias)
if etab.data_layout == 'NCHW':
out = _op.nn.bias_add(out, bias)
else:
out = _op.nn.bias_add(out, bias, axis=-1)
# defuse activation
if sys.version_info.major < 3:
act_type = keras_layer.activation.func_name
Expand All @@ -299,18 +322,27 @@ def _convert_convolution(inexpr, keras_layer, etab):

def _convert_separable_convolution(inexpr, keras_layer, etab):
_check_data_format(keras_layer)
if etab.data_layout == 'NHWC':
kernel_layout = 'HWOI'
else:
kernel_layout = 'OIHW'
weightList = keras_layer.get_weights()
# depthwise conv
kernel_h, kernel_w, in_channels, depth_mult = weightList[0].shape
stride_h, stride_w = keras_layer.strides
weight0 = weightList[0].transpose([2, 3, 0, 1])
if kernel_layout == 'OIHW':
weight0 = weightList[0].transpose([2, 3, 0, 1])
else:
weight0 = weightList[0]
params0 = {'weight': etab.new_const(weight0),
'channels': in_channels * depth_mult,
'groups': in_channels,
'kernel_size': [kernel_h, kernel_w],
'strides': [stride_h, stride_w],
'dilation': [1, 1],
'padding': [0, 0]}
'padding': [0, 0],
'data_layout': etab.data_layout,
'kernel_layout': kernel_layout}
if keras_layer.padding == 'valid':
pass
# we insert a separate pad operator
Expand All @@ -321,27 +353,39 @@ def _convert_separable_convolution(inexpr, keras_layer, etab):
pad_l, pad_r = _get_pad_pair(in_w, kernel_w, stride_w)
if pad_t == pad_b and pad_l == pad_r:
params0['padding'] = (pad_t, pad_l)
else:
elif etab.data_layout == 'NCHW':
inexpr = _op.nn.pad(data=inexpr, pad_width=(
(0, 0), (0, 0), (pad_t, pad_b), (pad_l, pad_r)))
else:
inexpr = _op.nn.pad(data=inexpr, pad_width=(
(0, 0), (pad_t, pad_b), (pad_l, pad_r), (0, 0)))

else:
msg = 'Padding with {} is not supported for operator Separable ' \
'Convolution in frontend Keras.'
raise tvm.error.OpAttributeUnImplemented(msg.format(keras_layer.padding))

depthconv = _op.nn.conv2d(data=inexpr, **params0)
# pointwise conv
weight1 = weightList[1].transpose([3, 2, 0, 1])
if kernel_layout == 'OIHW':
weight1 = weightList[1].transpose([3, 2, 0, 1])
else:
weight1 = weightList[1]
kernel_layout = "HWIO"
params1 = {'weight': etab.new_const(weight1),
'channels': weight1.shape[0],
'channels': weightList[1].shape[3],
'groups': 1,
'kernel_size': [1, 1],
'strides': [1, 1],
'dilation': [1, 1]}
'dilation': [1, 1],
'data_layout': etab.data_layout,
'kernel_layout': kernel_layout}
out = _op.nn.conv2d(data=depthconv, **params1)
if keras_layer.use_bias:
bias = etab.new_const(weightList[2])
out = _op.nn.bias_add(out, bias)
if etab.data_layout == 'NCHW':
out = _op.nn.bias_add(out, bias)
else:
out = _op.nn.bias_add(out, bias, axis=-1)
# defuse activation
if sys.version_info.major < 3:
act_type = keras_layer.activation.func_name
Expand All @@ -352,26 +396,31 @@ def _convert_separable_convolution(inexpr, keras_layer, etab):
return out


def _convert_flatten(inexpr, keras_layer, _):
def _convert_flatten(inexpr, keras_layer, etab):
_check_data_format(keras_layer)
# NCHW -> NHWC so that dense can be correctly converted
inexpr = _op.transpose(inexpr, axes=[0, 2, 3, 1])
if etab.data_layout == 'NCHW':
inexpr = _op.transpose(inexpr, axes=[0, 2, 3, 1])
return _op.nn.batch_flatten(inexpr)


def _convert_pooling(inexpr, keras_layer, etab):
_check_data_format(keras_layer)
pool_type = type(keras_layer).__name__
# global pool in keras = global pool + flatten in relay
global_pool_params = {'layout': etab.data_layout}
if pool_type == 'GlobalMaxPooling2D':
return _convert_flatten(_op.nn.global_max_pool2d(inexpr), keras_layer, etab)
return _convert_flatten(
_op.nn.global_max_pool2d(inexpr, **global_pool_params), keras_layer, etab)
if pool_type == 'GlobalAveragePooling2D':
return _convert_flatten(_op.nn.global_avg_pool2d(inexpr), keras_layer, etab)
return _convert_flatten(
_op.nn.global_avg_pool2d(inexpr, **global_pool_params), keras_layer, etab)
pool_h, pool_w = keras_layer.pool_size
stride_h, stride_w = keras_layer.strides
params = {'pool_size': [pool_h, pool_w],
'strides': [stride_h, stride_w],
'padding': [0, 0]}
'padding': [0, 0],
'layout': etab.data_layout}
if keras_layer.padding == 'valid':
pass
elif keras_layer.padding == 'same':
Expand All @@ -392,7 +441,7 @@ def _convert_pooling(inexpr, keras_layer, etab):
'Operator {} is not supported for frontend Keras.'.format(keras_layer))


def _convert_upsample(inexpr, keras_layer, _):
def _convert_upsample(inexpr, keras_layer, etab):
_check_data_format(keras_layer)
upsample_type = type(keras_layer).__name__
params = {}
Expand Down Expand Up @@ -424,7 +473,9 @@ def _convert_upsample(inexpr, keras_layer, _):
else:
raise tvm.error.OpNotImplemented(
'Operator {} is not supported for frontend Keras.'.format(upsample_type))
return _op.nn.upsampling(inexpr, **params)
params['layout'] = etab.data_layout
out = _op.nn.upsampling(inexpr, **params)
return out


def _convert_cropping(inexpr, keras_layer, _):
Expand All @@ -442,9 +493,15 @@ def _convert_cropping(inexpr, keras_layer, _):


def _convert_batchnorm(inexpr, keras_layer, etab):
if etab.data_layout == 'NCHW' or len(keras_layer.input_shape) < 4:
axis = 1
else:
axis = 3

params = {'scale': False,
'center': False,
'epsilon': keras_layer.epsilon}
'epsilon': keras_layer.epsilon,
'axis': axis}
idx = 0
if keras_layer.scale:
params['scale'] = True
Expand All @@ -469,7 +526,7 @@ def _convert_batchnorm(inexpr, keras_layer, etab):
return result


def _convert_padding(inexpr, keras_layer, _):
def _convert_padding(inexpr, keras_layer, etab):
_check_data_format(keras_layer)
padding_type = type(keras_layer).__name__
padding = keras_layer.padding
Expand All @@ -495,16 +552,21 @@ def _convert_padding(inexpr, keras_layer, _):
else:
msg = 'Operator {} is not supported in frontend Keras.'
raise tvm.error.OpNotImplemented(msg.format(padding_type))
return _op.nn.pad(data=inexpr,
pad_width=((0, 0), (0, 0), (top, bottom), (left, right)))
if etab.data_layout == 'NCHW':
return _op.nn.pad(data=inexpr, pad_width=((0, 0), (0, 0), (top, bottom), (left, right)))
return _op.nn.pad(data=inexpr, pad_width=((0, 0), (top, bottom), (left, right), (0, 0)))


def _convert_concat(inexpr, keras_layer, _):
def _convert_concat(inexpr, keras_layer, etab):
_check_data_format(keras_layer)
return _op.concatenate(_as_list(inexpr), axis=1)
if etab.data_layout == 'NHWC' or len(keras_layer.input_shape[0]) < 4:
axis = -1
else:
axis = 1
return _op.concatenate(_as_list(inexpr), axis=axis)


def _convert_reshape(inexpr, keras_layer, _):
def _convert_reshape(inexpr, keras_layer, etab):
_check_data_format(keras_layer)
inshape = keras_layer.input_shape # includes batch
tshape = keras_layer.target_shape # no batch
Expand All @@ -525,7 +587,10 @@ def _convert_reshape(inexpr, keras_layer, _):
assert ch == tshape[-1], \
"Only supports last dimension in target shape being equal to " \
"the channel number of input tensor."
shape = (-1, ch) + tshape[:-1]
if etab.data_layout == 'NCHW':
shape = (-1, ch) + tshape[:-1]
else:
shape = (-1,) + tshape[:-1] + (ch,)
return _op.reshape(inexpr, newshape=shape)


Expand Down Expand Up @@ -740,7 +805,7 @@ def keras_op_to_relay(inexpr, keras_layer, outname, etab):
etab.set_expr(name, out)


def from_keras(model, shape=None):
def from_keras(model, shape=None, layout='NCHW'):
"""Convert keras model to relay Function.
Parameters
Expand All @@ -751,6 +816,11 @@ def from_keras(model, shape=None):
shape: dict of str to int list/tuple
Input shapes of the model, optional
layout: str
One of 'NCHW' or 'NHWC', indicates how data should be arranged in
the output model. Default layout is 'NCHW' as it in general
performs better across TVM.
Returns
-------
mod : tvm.IRModule
Expand Down Expand Up @@ -793,6 +863,9 @@ def _convert_input_layer(keras_layer):
assert isinstance(model, expected_model_class)

etab = ExprTable()
# Set global data format.
assert layout in ['NCHW', 'NHWC'], "Layout must be one of 'NCHW' or NHWC"
etab.data_layout = layout
for keras_layer in model.layers:
if isinstance(keras_layer, input_layer_class):
_convert_input_layer(keras_layer)
Expand All @@ -818,7 +891,10 @@ def _convert_input_layer(keras_layer):
# The one exception is InputLayer. Changing input variable names after conversion
# would confuse users, so we should keep them as far as possible. Fortunately,
# they are named uniquely to input_1, input_2, input_3... by default.
zip_node = zip(node.node_indices, node.tensor_indices, node.inbound_layers)
zip_node = zip(
_as_list(node.node_indices),
_as_list(node.tensor_indices),
_as_list(node.inbound_layers))
for n_idx, t_idx, inbound_layer in zip_node:
if isinstance(inbound_layer, input_layer_class):
expr_name = inbound_layer.name
Expand Down
Loading

0 comments on commit 9af2202

Please sign in to comment.