Skip to content

Commit

Permalink
Add transformation to convert adaptive pool to reduce (openvinotoolki…
Browse files Browse the repository at this point in the history
…t#17488)

* Add transformation to convert adaptive pool to reduce

* Update src/common/transformations/src/transformations/common_optimizations/moc_transformations.cpp

* Add tests and apply feedback

* Simplify if branches

* Add to common pipeline

* Remove 3d AdaptivePool with out_shape 1

* Skip test instead of remove

---------

Co-authored-by: Andrei Kochin <[email protected]>
  • Loading branch information
mvafin and andrei-kochin authored May 19, 2023
1 parent 0b48fc7 commit 41de4ba
Show file tree
Hide file tree
Showing 5 changed files with 195 additions and 1 deletion.
Original file line number Diff line number Diff line change
@@ -0,0 +1,29 @@
// Copyright (C) 2018-2023 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
//

#pragma once

#include <memory>
#include <openvino/pass/graph_rewrite.hpp>
#include <transformations_visibility.hpp>
#include <vector>

namespace ov {
namespace pass {

class TRANSFORMATIONS_API AdaptivePoolToReduce;

} // namespace pass
} // namespace ov

/**
* @ingroup ie_transformation_common_api
* @brief AdaptivePoolToReduce transformation replaces AdaptiveXXXPool with ReduceXXX when possible
*/

class ov::pass::AdaptivePoolToReduce : public ov::pass::MatcherPass {
public:
OPENVINO_RTTI("AdaptivePoolToReduce", "0");
AdaptivePoolToReduce();
};
Original file line number Diff line number Diff line change
@@ -0,0 +1,63 @@
// Copyright (C) 2018-2023 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
//

#include "transformations/common_optimizations/adaptive_pool_to_reduce.hpp"

#include <memory>
#include <vector>

#include "itt.hpp"
#include "openvino/core/rt_info.hpp"
#include "openvino/op/adaptive_avg_pool.hpp"
#include "openvino/op/adaptive_max_pool.hpp"
#include "openvino/op/constant.hpp"
#include "openvino/op/reduce_max.hpp"
#include "openvino/op/reduce_mean.hpp"
#include "openvino/pass/pattern/op/wrap_type.hpp"
#include "transformations/utils/utils.hpp"

using namespace ov::op;

ov::pass::AdaptivePoolToReduce::AdaptivePoolToReduce() {
MATCHER_SCOPE(AdaptivePoolToReduce);
auto data_pattern = pattern::any_input();
auto out_spatial_shape = pattern::wrap_type<v0::Constant>();
auto a_pool = pattern::wrap_type<v8::AdaptiveAvgPool, v8::AdaptiveMaxPool>({data_pattern, out_spatial_shape});

ov::matcher_pass_callback callback = [=](pattern::Matcher& m) {
const auto& pattern_map = m.get_pattern_map();

const auto& spatial_shape_c = std::dynamic_pointer_cast<v0::Constant>(pattern_map.at(out_spatial_shape));
auto spatial_shape = spatial_shape_c->cast_vector<int64_t>();
// Verify that all dimensions in adaptive pool shape are 1
for (auto& s : spatial_shape) {
if (s != 1)
return false;
}

auto axes = std::vector<int64_t>(spatial_shape.size(), 0);
std::iota(axes.begin(), axes.end(), 2);
auto axes_const = v0::Constant::create(element::i64, {spatial_shape.size()}, axes);
const auto adaptive_pool = pattern_map.at(a_pool);
std::shared_ptr<Node> res_node;
if (std::dynamic_pointer_cast<v8::AdaptiveAvgPool>(adaptive_pool)) {
res_node = std::make_shared<v1::ReduceMean>(adaptive_pool->input_value(0), axes_const, true);
} else if (std::dynamic_pointer_cast<v8::AdaptiveMaxPool>(adaptive_pool)) {
if (adaptive_pool->outputs().size() > 1 && adaptive_pool->output(1).get_target_inputs().size() != 0) {
// If indexes are used we can't replace it
return false;
}
res_node = std::make_shared<v1::ReduceMax>(adaptive_pool->input_value(0), axes_const, true);
} else {
return false;
}
adaptive_pool->output(0).replace(res_node);
res_node->set_friendly_name(adaptive_pool->get_friendly_name());
copy_runtime_info(adaptive_pool, res_node);
return true;
};

auto m = std::make_shared<ov::pass::pattern::Matcher>(a_pool, matcher_name);
this->register_matcher(m, callback);
}
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,7 @@
#include <memory>
#include <ngraph/pass/constant_folding.hpp>
#include <ngraph/pass/manager.hpp>
#include <transformations/common_optimizations/adaptive_pool_to_reduce.hpp>
#include <transformations/common_optimizations/add_fake_quantize_fusion.hpp>
#include <transformations/common_optimizations/align_eltwise_input_ranks.hpp>
#include <transformations/common_optimizations/batch_to_space_fusion.hpp>
Expand Down Expand Up @@ -205,6 +206,7 @@ bool ov::pass::MOCTransformations::run_on_model(const std::shared_ptr<ngraph::Fu
ADD_MATCHER(common_fusions, DepthToSpaceFusion)
ADD_MATCHER(common_fusions, ShuffleChannelsFusion, !m_use_shapes)
ADD_MATCHER(common_fusions, NonZeroHorizontalFusion)
ADD_MATCHER(common_fusions, AdaptivePoolToReduce)
common_fusions->set_name("ov::pass::CommonFusions");

REGISTER_PASS(manager, BinarizeWeights)
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,98 @@
// Copyright (C) 2018-2023 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
//

#include <gtest/gtest.h>

#include <openvino/opsets/opset10.hpp>
#include <transformations/common_optimizations/adaptive_pool_to_reduce.hpp>

#include "common_test_utils/ngraph_test_utils.hpp"

using namespace testing;
using namespace ov;

TEST_F(TransformationTestsF, AdaptiveAvgPool2dToReduceMean) {
{
auto data = std::make_shared<opset10::Parameter>(element::f32, PartialShape{1, 3, 14, 14});
auto out_spatial_shape = opset10::Constant::create(element::i32, Shape{2}, {1, 1});
auto adaptive_pool = std::make_shared<opset10::AdaptiveAvgPool>(data, out_spatial_shape);
auto result = std::make_shared<opset10::Result>(adaptive_pool);
model = std::make_shared<Model>(ResultVector{result}, ParameterVector{data});
manager.register_pass<pass::AdaptivePoolToReduce>();
}
{
auto data = std::make_shared<opset10::Parameter>(element::f32, PartialShape{1, 3, 14, 14});
auto axes = opset10::Constant::create(element::i64, Shape{2}, {2, 3});
auto reduce_mean = std::make_shared<opset10::ReduceMean>(data, axes, true);
auto result = std::make_shared<opset10::Result>(reduce_mean);
model_ref = std::make_shared<Model>(ResultVector{result}, ParameterVector{data});
}
}

TEST_F(TransformationTestsF, AdaptiveMaxPool2dToReduceMax) {
{
auto data = std::make_shared<opset10::Parameter>(element::f32, PartialShape{1, 3, 14, 14});
auto out_spatial_shape = opset10::Constant::create(element::i32, Shape{2}, {1, 1});
auto adaptive_pool = std::make_shared<opset10::AdaptiveMaxPool>(data, out_spatial_shape);
auto result = std::make_shared<opset10::Result>(adaptive_pool);
model = std::make_shared<Model>(ResultVector{result}, ParameterVector{data});
manager.register_pass<pass::AdaptivePoolToReduce>();
}
{
auto data = std::make_shared<opset10::Parameter>(element::f32, PartialShape{1, 3, 14, 14});
auto axes = opset10::Constant::create(element::i64, Shape{2}, {2, 3});
auto reduce_mean = std::make_shared<opset10::ReduceMax>(data, axes, true);
auto result = std::make_shared<opset10::Result>(reduce_mean);
model_ref = std::make_shared<Model>(ResultVector{result}, ParameterVector{data});
}
}

TEST_F(TransformationTestsF, AdaptiveMaxPool2dToReduceMaxUsedIndexes) {
{
auto data = std::make_shared<opset10::Parameter>(element::f32, PartialShape{1, 3, 14, 14});
auto out_spatial_shape = opset10::Constant::create(element::i32, Shape{2}, {1, 1});
auto adaptive_pool = std::make_shared<opset10::AdaptiveMaxPool>(data, out_spatial_shape);
auto result1 = std::make_shared<opset10::Result>(adaptive_pool->output(0));
auto result2 = std::make_shared<opset10::Result>(adaptive_pool->output(1));
model = std::make_shared<Model>(ResultVector{result1, result2}, ParameterVector{data});
manager.register_pass<pass::AdaptivePoolToReduce>();
}
// Reference model equals initial model
}

TEST_F(TransformationTestsF, AdaptiveAvgPool3dToReduceMean) {
{
auto data = std::make_shared<opset10::Parameter>(element::f32, PartialShape{1, 3, 14, 14, 14});
auto out_spatial_shape = opset10::Constant::create(element::i32, Shape{3}, {1, 1, 1});
auto adaptive_pool = std::make_shared<opset10::AdaptiveAvgPool>(data, out_spatial_shape);
auto result = std::make_shared<opset10::Result>(adaptive_pool);
model = std::make_shared<Model>(ResultVector{result}, ParameterVector{data});
manager.register_pass<pass::AdaptivePoolToReduce>();
}
{
auto data = std::make_shared<opset10::Parameter>(element::f32, PartialShape{1, 3, 14, 14, 14});
auto axes = opset10::Constant::create(element::i64, Shape{3}, {2, 3, 4});
auto reduce_mean = std::make_shared<opset10::ReduceMean>(data, axes, true);
auto result = std::make_shared<opset10::Result>(reduce_mean);
model_ref = std::make_shared<Model>(ResultVector{result}, ParameterVector{data});
}
}

TEST_F(TransformationTestsF, AdaptiveMaxPool3dToReduceMax) {
{
auto data = std::make_shared<opset10::Parameter>(element::f32, PartialShape{1, 3, 14, 14, 14});
auto out_spatial_shape = opset10::Constant::create(element::i32, Shape{3}, {1, 1, 1});
auto adaptive_pool = std::make_shared<opset10::AdaptiveMaxPool>(data, out_spatial_shape);
auto result = std::make_shared<opset10::Result>(adaptive_pool);
model = std::make_shared<Model>(ResultVector{result}, ParameterVector{data});
manager.register_pass<pass::AdaptivePoolToReduce>();
}
{
auto data = std::make_shared<opset10::Parameter>(element::f32, PartialShape{1, 3, 14, 14, 14});
auto axes = opset10::Constant::create(element::i64, Shape{3}, {2, 3, 4});
auto reduce_mean = std::make_shared<opset10::ReduceMax>(data, axes, true);
auto result = std::make_shared<opset10::Result>(reduce_mean);
model_ref = std::make_shared<Model>(ResultVector{result}, ParameterVector{data});
}
}
Original file line number Diff line number Diff line change
Expand Up @@ -170,7 +170,9 @@ std::vector<std::string> disabledTestPatterns() {
// 98151. Not valid sorting for slices in reference.
R"(.*UniqueLayerTestCPU.*axis.*True.*)",
// AUTO does not support import / export
R"(.*smoke_Auto_BehaviorTests/OVCompiledGraphImportExportTest.*(mportExport|readFromV10IR).*/targetDevice=(AUTO).*)"
R"(.*smoke_Auto_BehaviorTests/OVCompiledGraphImportExportTest.*(mportExport|readFromV10IR).*/targetDevice=(AUTO).*)",
// AdaptiveAvgPool is converted into Reduce op for suitable parameters. CPU Reduce impl doesn't support non planar layout for 3D case
R"(.*StaticAdaPoolAvg3DLayoutTest.*OS=\(1\).*_inFmts=(nwc|nCw16c|nCw8c).*)"
};

#if defined(OPENVINO_ARCH_X86)
Expand Down

0 comments on commit 41de4ba

Please sign in to comment.