Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Bump the pip group across 2 directories with 1 update #2

Merged

Conversation

dependabot[bot]
Copy link

@dependabot dependabot bot commented on behalf of github Nov 23, 2024

Bumps the pip group with 1 update in the /applications/DeepSpeed-VisualChat directory: transformers.
Bumps the pip group with 1 update in the /compression/bert directory: transformers.

Updates transformers from 4.33.3 to 4.38.0

Release notes

Sourced from transformers's releases.

v4.38: Gemma, Depth Anything, Stable LM; Static Cache, HF Quantizer, AQLM

New model additions

💎 Gemma 💎

Gemma is a new opensource Language Model series from Google AI that comes with a 2B and 7B variant. The release comes with the pre-trained and instruction fine-tuned versions and you can use them via AutoModelForCausalLM, GemmaForCausalLM or pipeline interface!

Read more about it in the Gemma release blogpost: https://hf.co/blog/gemma

from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b")
model = AutoModelForCausalLM.from_pretrained("google/gemma-2b", device_map="auto", torch_dtype=torch.float16)
input_text = "Write me a poem about Machine Learning."
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
outputs = model.generate(**input_ids)

You can use the model with Flash Attention, SDPA, Static cache and quantization API for further optimizations !

  • Flash Attention 2
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b")
model = AutoModelForCausalLM.from_pretrained(
"google/gemma-2b", device_map="auto", torch_dtype=torch.float16, attn_implementation="flash_attention_2"
)
input_text = "Write me a poem about Machine Learning."
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
outputs = model.generate(**input_ids)

  • bitsandbytes-4bit
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b")
model = AutoModelForCausalLM.from_pretrained(
"google/gemma-2b", device_map="auto", load_in_4bit=True
)
</tr></table>

... (truncated)

Commits
  • 08ab54a [ gemma] Adds support for Gemma 💎 (#29167)
  • 2de9314 [Maskformer] safely get backbone config (#29166)
  • 476957b 🚨 Llama: update rope scaling to match static cache changes (#29143)
  • 7a4bec6 Release: 4.38.0
  • ee3af60 Add support for fine-tuning CLIP-like models using contrastive-image-text exa...
  • 0996a10 Revert low cpu mem tie weights (#29135)
  • 15cfe38 [Core tokenization] add_dummy_prefix_space option to help with latest is...
  • efdd436 FIX [PEFT / Trainer ] Handle better peft + quantized compiled models (#29...
  • 5e95dca [cuda kernels] only compile them when initializing (#29133)
  • a7755d2 Generate: unset GenerationConfig parameters do not raise warning (#29119)
  • Additional commits viewable in compare view

Updates transformers from 4.15.0 to 4.38.0

Release notes

Sourced from transformers's releases.

v4.38: Gemma, Depth Anything, Stable LM; Static Cache, HF Quantizer, AQLM

New model additions

💎 Gemma 💎

Gemma is a new opensource Language Model series from Google AI that comes with a 2B and 7B variant. The release comes with the pre-trained and instruction fine-tuned versions and you can use them via AutoModelForCausalLM, GemmaForCausalLM or pipeline interface!

Read more about it in the Gemma release blogpost: https://hf.co/blog/gemma

from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b")
model = AutoModelForCausalLM.from_pretrained("google/gemma-2b", device_map="auto", torch_dtype=torch.float16)
input_text = "Write me a poem about Machine Learning."
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
outputs = model.generate(**input_ids)

You can use the model with Flash Attention, SDPA, Static cache and quantization API for further optimizations !

  • Flash Attention 2
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b")
model = AutoModelForCausalLM.from_pretrained(
"google/gemma-2b", device_map="auto", torch_dtype=torch.float16, attn_implementation="flash_attention_2"
)
input_text = "Write me a poem about Machine Learning."
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
outputs = model.generate(**input_ids)

  • bitsandbytes-4bit
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b")
model = AutoModelForCausalLM.from_pretrained(
"google/gemma-2b", device_map="auto", load_in_4bit=True
)
</tr></table>

... (truncated)

Commits
  • 08ab54a [ gemma] Adds support for Gemma 💎 (#29167)
  • 2de9314 [Maskformer] safely get backbone config (#29166)
  • 476957b 🚨 Llama: update rope scaling to match static cache changes (#29143)
  • 7a4bec6 Release: 4.38.0
  • ee3af60 Add support for fine-tuning CLIP-like models using contrastive-image-text exa...
  • 0996a10 Revert low cpu mem tie weights (#29135)
  • 15cfe38 [Core tokenization] add_dummy_prefix_space option to help with latest is...
  • efdd436 FIX [PEFT / Trainer ] Handle better peft + quantized compiled models (#29...
  • 5e95dca [cuda kernels] only compile them when initializing (#29133)
  • a7755d2 Generate: unset GenerationConfig parameters do not raise warning (#29119)
  • Additional commits viewable in compare view

Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


Dependabot commands and options

You can trigger Dependabot actions by commenting on this PR:

  • @dependabot rebase will rebase this PR
  • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
  • @dependabot merge will merge this PR after your CI passes on it
  • @dependabot squash and merge will squash and merge this PR after your CI passes on it
  • @dependabot cancel merge will cancel a previously requested merge and block automerging
  • @dependabot reopen will reopen this PR if it is closed
  • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
  • @dependabot show <dependency name> ignore conditions will show all of the ignore conditions of the specified dependency
  • @dependabot ignore <dependency name> major version will close this group update PR and stop Dependabot creating any more for the specific dependency's major version (unless you unignore this specific dependency's major version or upgrade to it yourself)
  • @dependabot ignore <dependency name> minor version will close this group update PR and stop Dependabot creating any more for the specific dependency's minor version (unless you unignore this specific dependency's minor version or upgrade to it yourself)
  • @dependabot ignore <dependency name> will close this group update PR and stop Dependabot creating any more for the specific dependency (unless you unignore this specific dependency or upgrade to it yourself)
  • @dependabot unignore <dependency name> will remove all of the ignore conditions of the specified dependency
  • @dependabot unignore <dependency name> <ignore condition> will remove the ignore condition of the specified dependency and ignore conditions
    You can disable automated security fix PRs for this repo from the Security Alerts page.

Bumps the pip group with 1 update in the /applications/DeepSpeed-VisualChat directory: [transformers](https://github.com/huggingface/transformers).
Bumps the pip group with 1 update in the /compression/bert directory: [transformers](https://github.com/huggingface/transformers).


Updates `transformers` from 4.33.3 to 4.38.0
- [Release notes](https://github.com/huggingface/transformers/releases)
- [Commits](huggingface/transformers@v4.33.3...v4.38.0)

Updates `transformers` from 4.15.0 to 4.38.0
- [Release notes](https://github.com/huggingface/transformers/releases)
- [Commits](huggingface/transformers@v4.33.3...v4.38.0)

---
updated-dependencies:
- dependency-name: transformers
  dependency-type: direct:production
  dependency-group: pip
- dependency-name: transformers
  dependency-type: direct:production
  dependency-group: pip
...

Signed-off-by: dependabot[bot] <[email protected]>
@dependabot dependabot bot added the dependencies Pull requests that update a dependency file label Nov 23, 2024
@akaday akaday merged commit 0f0649f into master Nov 23, 2024
@dependabot dependabot bot deleted the dependabot/pip/applications/DeepSpeed-VisualChat/pip-23a1ba7ba1 branch November 23, 2024 21:14
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
dependencies Pull requests that update a dependency file
Projects
None yet
Development

Successfully merging this pull request may close these issues.

1 participant